

Integrierte Videoverstärkerkombination für Schwarzweiß- und Farbfernsehempfänger. Neben der Verstärkung des Video- bzw. Luminanzsignals enthält der A 270 D Funktionsgruppen zur Strahlstrombegrenzung, Schwarzwerttastung und Helligkeitsklemmschaltung. Die Kontrast- und Helligkeitseinstellung erfolgen durch Gleichspannungen. An den Schaltkreis ist der Anschluß einer Verzögerungsleitung beliebiger Impedanz möglich.

Abmessungen in mm und Anschlußbelegung:

1 - Ausgang

2 - Betriebsspannung

3 - Eingang

4 - Kollektor)

5 - Basis) npn-

6 - Emitter) Transistor

7 - Kontrasteinstellung

8.9 - Strahistrombegrenzung

10,11 - Tasteingänge für Horizontalimpuls

12,14 - Helligkeitseinstellung

13 - Ladekondensator für Klemmregelung

15 - Signaleingang für Klemmregelung

16 - Masse

Gehäuse : DIL - Plastgehäuse

Masse : ca. 1 g

Bauform : K 21, D 2.1.16 nach TGL 26713

Typstandard: TGL 31460

Grenzwerte, g	jültig für	den Betri	riebstemperaturbereich:
---------------	------------	-----------	-------------------------

		min	max	
Betriebsspannung	U _S = U _{2,1}	6	15,5	٧
Kollektor-Emitter-				
Spannung des npn-Transistors	U _{4,6}		13,2	• •
Kollektor-Substrat-				
Spannung des npn-Transistors	U _{4,16}		15,5	V
Emitter-Basis-Sperr-				
spannung des				
npn-Transistors	U _{6,5}		5	٧
Kollektorstrom des				_
npn-Transistors	14		10	mA
Basisstrom des				
npn-Transistors	l ₅		2	mA
Verlustleistung des				
npn-Transistors				
ϑ₀ = 25 °C	P _{npn}		20	mW
Spannung an den				
Anschlüssen 8 und 9	U _{8,16}	- 2	+4	٧.
	U _{9,16}	- 2	+4	V
Spannung an den				
Anschlüssen 10 und 11	U _{10,16}	- 5	+6	٧
	U _{11,16}	- 5	+6	V

		min		max		
Spannung an Anschluß 1 $R_{15.16} \le 5,1 \text{ k }\Omega$	5 U _{15,16}	0		+5	٧	
Signalspannung an Anschluß 3						
U _{2.16} = 12 V U _{2.16} = 15 V	U _{BAS}			1,2 1,6	v	
Ausgangsstrom	-I ₁			20	mA	
Gesamtverlustleistung $\vartheta_{\rm a} = 25~{\rm ^{\circ}C}$	P _{tot}			700	mW	
Betriebstemperatur- bereich	v .	-10		+55	°C	
Elektrische Kennwerte $(U_{2,16} = 12 \text{ V}, \sqrt[9]{a} = 25 \text{ °C - 5 grd}, U_{7,16} = 3,9 \text{ V})$						
		min	typ	max		
Stromaufnahme U ₁₂ = 1,2 V	I ₂			36	mA	
Spannungsverstärkung $\Delta U_{3,16}$ = Sprung von 3,2 auf 3,6 V $U_{7,16}$ = 3,3 V	V _u ¹⁾	1,8		2,8		
Sättigungsspannung des npn-Transistors						

		min	typ	max	
Schwarzwert-Einstell- bereich					
$U_{12,16} = 1,2 \text{ V}$	U _{15,16}	_		0,5	v
$U_{12,16} = 4,2 \text{ V}$	U _{15,16}	3			٧
Schwarzwertabweichung △U _{3,16} = Sprung von 2.8 auf 3,6 V					
U _{12,16} = 2,0 V	△ U _{15,16}			20	m۷
Videobandbreite ⁵⁾ $U_{7,16} = 3,3 \text{ V}, u_3 = 0,5 \text{ V}_{ss}$ $\triangle V_u = -3 \text{ dB}$ $\triangle V_u = -4 \text{ dB}$	B _{video}	6 7			MHz MHz
Nichtlinearität des Ausgangssignals u _{iBAS} = 0,8 V △ U _{3,16(1)} = Sprung von 3,2 auf 3,6 V △ U _{3,16(2)} = Sprung von 2,8 auf 3,2 V	m∪ ²⁾			0,05	i
Nichtlinearität des Ausgangssignals im Kon- trasteinstellbereich von 15 dB u _{iBAS} =0,8 V, U _{7,16(1)} =3,3 V U _{7,16(2)} =2,5 V, U _{7,16(3)} =1,7 △ U _{3,16} = Sprung von	v				
3,2 auf 4,0 V	m _k ³⁾			0,1	

min typ max

Kontrasteinstellumfang

 $\Delta U_{3,16} =$

Sprung von 3,2 auf 4,0 V

$$U_{7,16(1)} = 1,2 \text{ V},$$

$$U_{7,16(2)} = 3,3 \text{ V}$$

dB

Ausgangsspannung bei

Strahlstrombegrenzung

U_{8,16}=2,1 V, U_{7,16}=3,3 V

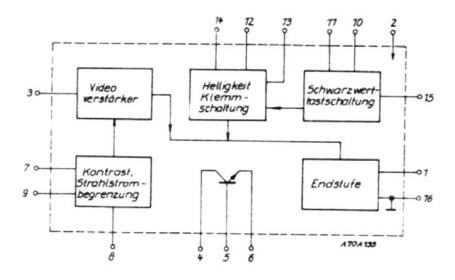
U_{3.16} = Sprung von

160 mV

1)
$$V_u = \frac{\Delta U_{1,16}}{\Delta U_{3,16}}$$

$$^{2)} m_u = 1 - \frac{\triangle U_{1,16} (\triangle U_{3,16}(2))}{\triangle U_{1,16} (\triangle U_{3,16}(1))}$$

$$^{3)} m_k = \frac{1}{2} [1 - 2 \triangle U_{1,16} (U_{7,16}(2)) - \triangle U_{1,16} (U_{7,16}(3))]$$


$$\triangle U_{1,16} (U_{7,16}(1)) - \triangle U_{1,16} (U_{7,16}(3))$$

$$^{4)}\triangle U_{1}(U_{7}) = \frac{\triangle U_{1,16} (U_{7,16}(2))}{\triangle U_{1,16} (U_{7,16}(1))}$$

$$^{5)} \triangle V_{u} = \frac{V_{u}}{V_{u} (500 \text{ kHz})}$$

Blockschaltung:

<u>Bestellbeispiel</u>: Integrierter Schaltkreis A 270 D TGL 31460 Änderungen vorbehalten!

