

Integrierte Halbleiterschaltkreise Kamera-Schaltkreis A 321 G Technische Bedingungen

Gruppe 13787

Микросхемы интегральные полупроводниковые; Схема управления операциями фотокамеры A321G; Тех-

Integrated Semiconductor Circuits; Circuit for Cameraoperation A321 G; Detail Specification

Deskriptoren: Integrierter Halbleiterschaltkreis

Umfang 12 Seiten

Verantwortlich/bestätigt: 20.7.1987, VEB Kombinat Mikroelektronik, Erfurt

Verbindlich ab 1.9.1988

Vorbemerkung

Der Schaltkreise A321 G ist für den Einsatz in elektronisch gesteuerten Kameras vorgesehen.

Der Schaltkreis realisiert folgende Funktionen:

Umwandlung der Eingabegrößen für die Objektleuchtdichte L, die Filmempfindlichkeit x und den Blendenwert k in eine dem Logarithmus der Belichtungszeit proportionale Impulsdauer ${
m t}_{
m 26}$

Umwandlung der Eingabegröße für die Objektleuchtdichte L in eine Impulsdauer t27 für die impulsbreitenmodulierte Helligkeitssteuerung des LED-Displays

Gewinnung eines Blitzlöschimpulses TEF durch Verknüpfung der Eingabegrößen Lichtmenge bei Arbeitsblende und Filmempfindlichkeit x

Ausgabe eines Entscheidungssignals über den Batteriezustand (Unterspannungskontrolle)

Umwandlung der CCS-Eingangsinformation ($\pm U_{CCS} + U_{30}$ in einen LED-Steuerstrom zur Blitzbereitschaftsanzeige und in ein invertiertes Ausgangssignal (CCN)

Bereitstellung und Nutzung verschiedener temperaturstabiler und -proportionaler Referenzspannungen

Standardisieruna –	, 1. 🔏	ALLGEMEINE TECHNISCHE BEDINGUNGEN	5	Nichtinvertierender Eingang, Drain MOS Tageslicht
<u>.</u>	nach	TGL 24951	6	Invertierender Eingang, Drain MOS Tageslicht
Š		•	7,31	Masse (Substrat)
ē	1.1. li	ntegrationsgrad	8	Anschluß für Steilheitsregler A/D-Rampe
Ē	IG3		9	Ausgang Referenzspannung
		•	10	Ausgang log-Verstärker Fotostrom Blitzlicht
î.	1.2: E	3ezeichnung	11	log-Eingang Fotostrom Blitzlicht
			12	Source-Konstantstrom MOS-Eingangsstufe
Verlag		SCHALTKREIS A 321 G TGL 43 099	-	Blitzlicht
Verlag: Ve		•	13	Nichtinvertierender Eingang, Drain MOS Blitz- licht
岩	2. T	TECHNISCHE FORDERUNGEN	14	Invertierender Eingang, Drain MOS Blitzlicht
×	2.1. K	Construktion	15	Anschluß für Steilheitsregler BMC-Rampe
		Bauform, Ausführung	16	nb
		1 siehe Seite 2)	17	Kondensatorenanschluß für BMC-Rampe
		Masse	18	Ausgang Referenzspannung
	≤ 0.4		19	Kondensatorenanschluß für A/D-Rampe
		-	20	Eingang Justagespannung Blitzlicht
108	nach 1	Fluß- und Waschmittelbeständigkeit TGL 32377/02	21	Ausgang Referenzspannung, temperaturab- hängige
318/88 ST 1		Lötbarkeit der Anschlüsse	22	Eingang Justagespannung Tageslichtkanal
80	Lötba	r unter folgenden Bedingungen: 240°C, 2s	23	Eingang Justagespannung Rampen-C-
8	22 A	Anschlußbelegung		Fußpunkt
5			24	Ausgang Referenzspannung
´ 1.	1	Ausgang log-Verstärker Fotostrom Tageslicht	25	Invertiertes Blitzbereitschaftssignal CCN
85	2	Katode der Entladediode Tageslichtkanal	26	Ausgang A/D-Komparator
_	3 4	log-Eingang Fotostrom Tageslicht	27	Ausgang BMC-Komparator
Ž	4	Source-Konstantstrom MOS-Eingangsstufe	28	Eingang ADS-Steuerspannung Rampengene-
Lizenz-Nr, 785		Tageslicht		rator
Ľ				· · · · · · · · · · · · · · · · · · ·

29	Ausgang Batterie-Unterspannungskontrolle PSC	41	Ausgangsspannung Summierer Belichtungs-
30	Betriebsspannung		zeitbildung
32	Eingang CCS (Blitzbereitschaftsspannung)	42	Ausgang verzögerte Referenzspannung
33	Blitz-Löschsignal TEF	43	nb
34	Ausgang Startfreigabe Blitzkanal CCI	44	Ausgangsspannung Summierer Helligkeits-
35	Eingang x-EST (Filmempfindlichkeit)		modulation
36	nb	45	nb .
37	Eingang x-EST (Blendenwert)	46	Ausgang Blitzlichtmengenkomparator
38	Ausgang Referenzspannung	47	Eingang Blitzlichtmengenkomparator
39	LED-Blitzbereitschaftsanzeige	48	Eingang Freigabe Lichtmengenkomparator xk
40	Ausgang stabilisierte Spannung	nb ni	cht belegt

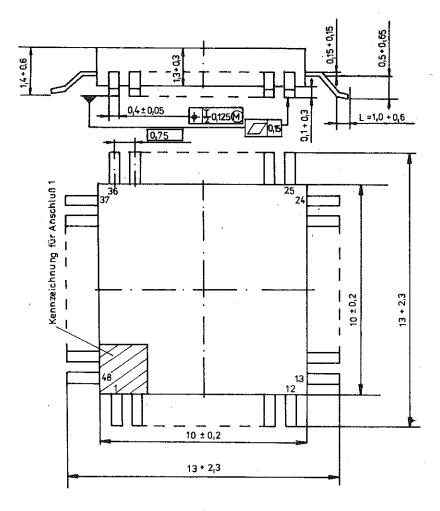


Bild 1 Ausführung: Gehäuse aus Plast

2.3. Blockschaltbild

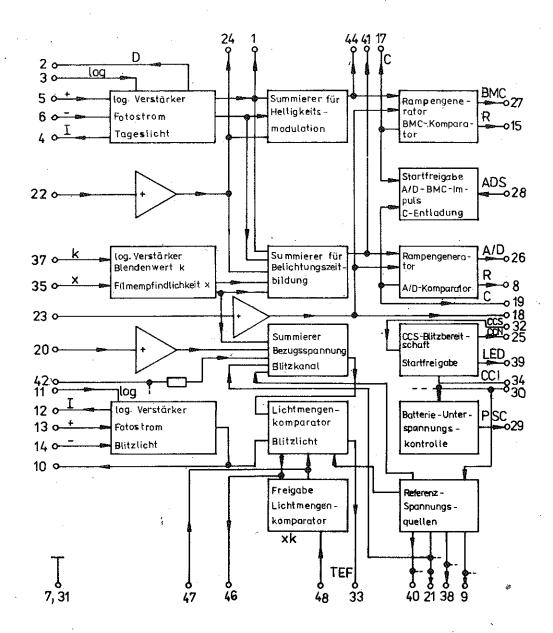


Bild 2

2.4. Elektrische Eigenschaften

Die Kenngrößen nach Tabelle 1 und 2 gelten bei $\vartheta_a=25^{\circ}\text{C}-5\,\text{K}$; falls nicht anders angegeben

2.4.1. Hauptkenngrößen Tabelle 1

Kenngröße			Kleinst- wert	Größt- wert	Einstellwerte	Prüf- kate- gorie	Bewer- tungs- krite- rien	Meß- ver- fahren nach Ab- schnitt
Betriebsstrom I ₃₀		mA		21 26	$U_{30} = 6.8 \text{ V} \pm 12.5 \text{ V}$		a K	4.7.2.
Konstantstrom A/D-R -I ₁₉	ampe	μΑ	9,0 6,0	15,0 18,3	U ₃₀ = 3,6 V ± 12,5 V und 6,8 V ± 12,5 V	-	a K	4.7.7.
Konstantenstrom BM -I ₁₇	C-Rampe	μΑ	12,0 9,8	20,0 24,2	$U_{28} = 2.7 \text{ V} \pm 0.1 \text{ V}$ $U_{18} = 1.2 \text{ V} \pm 2 \text{ mV}$		a K	4.7.7.
LED-Treiberstrom I ₃₉		μΑ		10 20	$U_{30} = U_{32}^* = 6.8 \text{ V}$ $\pm 12.5 \text{ mV}^{1)}$		a K	
	<u>-</u>	mA	5,0 4,5	9,0 9,5	$U_{30} = 3,6 \text{ V} \pm 12,5 \text{ mV}$ $U_{32}^* = U_{30} - 3,2 \text{ V}$ $\pm 0,1 \text{ V}^{1)}$		a K	4.7.12.
			5,0 4,5	9,0 9,5	$U_{30} = 3,6 \text{ V} \pm 12,5 \text{ mV}$ $U_{32}^* = U_{30} + 3,2 \text{ V}$ $\pm 0,1 \text{ V}^{1}$		a K	
Referenzspannung ₍	J ₉	V	1,65 1,50	1,95 2,06	20,10		a K	,
	J ₂₁	٧	0,40 0,35	0,60 0,67	$U_{30} = 4,5 \text{ V} \pm 12,5 \text{ mV}$		a K	4.7.3.
	J ₃₈	V	1,10 1,00	1,30 1,37		Α,	a K	
Teilerverhältnis ŋ			0,58	0,78	$ \begin{array}{l} U_{30} = 4.5 \text{ V} \pm 12.5 \text{ mV} \\ I_{FB} = I_{11} = 16 \text{ nA} \\ \pm 0.4 \text{ nA} \\ U_{32}^{*2} = U_{30}^{11} \\ U_{35}^{*5} = 0.60 \text{ V} (-9 \text{ dB} \\ \pm 0.1 \text{ dB})^{21} \end{array} $	Β, Ω	a	4.7.3., 4.7.13., 4.7.11.
			, 0,46	0,90	$\begin{array}{c} \text{Abgleich mit } U_{20} \\ \text{auf } I_{\text{C3}} = \\ 190 \text{ nA}_{-28 \text{ nA}}^{+32 \text{ nA}} \\ \eta = \frac{U_{20}}{U_{21}} \end{array}$	-	К	
Justagespannung l	J ₂₂	V	0,31 0,27	0,37 0,42	$U_{30} = 4,5 \text{ V} \pm 12,5 \text{ mV} U_{24} = 1,2 \text{ V} \pm 2 \text{ mV}$		a K	4.7.5.
	J ₂₃	٧	0,27 0,24	0,33 0,37	$U_{30} = 4,5 \text{ V} \pm 12,5 \text{ mV} U_{18} = 1,2 \text{ V} \pm 2 \text{ mV}$		a K	
Ausgangsspannung A rator U ₂₆	/D-Kompa-	V	3,50		$\begin{array}{l} U_{30} = 3.6 \text{V} \pm 12.5 \text{mV} \\ U_{28} = 2.7 \text{V} \pm 0.1 \text{V} \\ I_{FT} = I_3 = 256 \text{nA} \pm 5 \text{nA} \\ U_{35}^* = 1.7 \text{V} (0 \text{dB} \pm 0.1 \text{dB})^{2} \\ U_{37}^* = 0.30 \text{V} (-15 \text{dB} \pm 0.1 \text{dB})^{3} \end{array}$	-	a, K	4.7.9.
	*		***************************************	0,40	$U_{30} = 6.8 \text{ V} \pm 12.5 \text{ mV} U_{28} = 0 \text{ V} \pm 0.1 \text{ V}$			
Ausgangsspannung B rator U ₂₇	MC-Kompa-	V	3,50	· —	$U_{30} = 3,6 \text{ V} \pm 12,5 \text{ mV}$ $U_{28} = 2,7 \text{ V} \pm 0,1 \text{ V}$ $I_{\text{FT}} = I_3 = 256 \text{ nA} \pm 5 \text{ nA}$	•	-	
	THE ANGEST AMERICAN SERVICE SE			0,40	$U_{30} = 6.8 \text{ V} \pm 12.5 \text{ mV} U_{28} = 0 \text{ V} \pm 0.1 \text{ V}$		SACTOR (SET Making Make consisting the discount design of	

Fortsetzung der Tabelle Seite 5

¹ U_{32}^* : Spannung am Außenanschluß von R3 2 $U_{35}^* = U_{35} - U_{38}$, angegebene Spannungsdämpfung auf maximalen Differenzwert 1,7 V bezogen 3 $U_{37}^* = U_{37} - U_{38}$; angegebene Spannungsdämpfung auf maximalen Differenzwert 1,7 V bezogen

Fortsetzung der Tabelle 1

Kenngröße		Kleinst- wert	Größt- wert	Einstellwerte	Prüf- kate- gorie	Bewer- tungs- krite-	Meß- ver- fahren
• •						rien	nach Ab- schnitt
Unterspannungskontrolle U ₃₀	V	3,20	3,70	U ₂₉ : H-Potential bei		а	
,		3,00	3,95	Unterspånnung; L/H-Flanke im Um- schaltpunkt Triggerschwelle	,	K	4.7.6.
				für U ₂₉ -Umschalt- punkt 3,10 V ± 10 mV			
Stabilisierte Spannung U ₄₀	٧	2,70	3,20	$U_{30} = 3.6 \text{ V} \pm 12.5 \text{ mV}$		а	
		2,55	3,40			K	4.7.4.
-		2,70	3,20	$U_{30} = 6.8 \text{ V} \pm 12.5 \text{ mV}$		а	
		2,55	3,40	- ,, -, -, -, -, -, -, -, -, -, -, -, -,		К	
Rampenstrom-Differenz A/D-Rampe ΔI ₁₉	μΑ	-0,3	0,3	U ₃₀ = 3,6 V/6,8 V ± 12,5 mV		а	
		-0,6	0,6	$U_{28} = 2.7 \text{ V} \pm 0.1 \text{ V}$ $U_{18} = 1.2 \text{ V} \pm 2 \text{ mV}$		K	4.7.8.
Rampenstrom-Differenz		-0,4	0,4	U ₃₀ = 3,6 V/6,8 V	1	а	7.7.0.
BMC-Rampe ΔI ₁₇	μΑ	-0,7	0,7	\pm 12,5 mV $U_{28} = 2,7 \text{ V} \pm 0,1 \text{ V}$ $U_{18} = 1,2 \text{ V} \pm 2 \text{ mV}$	Α,	K	
A/D-Ausgangs-Impulsverhältnis	σ_{L}	0,68	1,32	$U_{30} = 4.5 \text{ V} \pm 12.5 \text{ mV}$	Β, Q	а	4.7.10.,
				$U_{37}^* = 0.30 \text{ V} (-15 \text{ dB} \pm 0.1 \text{ dB})^{3}$ $U_{35}^* = 1.7 \text{ V} (0 \text{ dB})^{3}$			4.7.19.
		:	,				
1				$512 \text{ nA} \pm 10 \text{ nA}$ $t_{26(1)}: l_{\text{FT}} = l_3 =$			
		0.50	4.50	256 nA ± 5 nA		K ·	
· · · · · · · · · · · · · · · · · · ·	',	0,50	1,50	$t_{26(2)}:I_{FT}=I_3=4 \text{ nA} \pm 100 \text{ pA}$			
				U ₂₈ : ADS-Impulse			
. '				$U_{18,24} = 1,2 \text{ V} \\ \pm 2 \text{ mV}$			
A/D-Ausgangs-Impulsverhältnis	σ_{K}	-0,33	0,33	$U_{30} = 4.5 \text{ V} \pm 12.5 \text{ mV}$	1	а	4.7.10.,
		-		$U_{35}^* = 1.7 \text{ V } (0 \text{ dB} \pm 0.1 \text{ dB})^{2}$	1		4.7.20.
				U ₂₈ : ADS-Impulse			
				$t_{26(3)}:I_{FT}=I_3=$			
				4 nA ± 100 pA U ₃₇ = 1,7 V			
			0.5	$(0 dB \pm 0.1 dB)^{3}$			
·	٠	-0,5	0,5	$t_{26(4)}$: $l_{FT} = l_3 = 1024 \text{ nA} \pm 20 \text{ nA}$		K	
				$U_{37}^* = 0,107 \text{ V}$			
· · ·				(-24 dB ± 0,1 dB) ³⁾			
				$U_{18,24} = 1.2 \text{ V} \pm$			
	**************************************	J		2 mV			

Fortsetzung der Tabelle Seite 6

² siehe Seite 4 3 siehe Seite 4

Fortsetzung der Tabelle 1

Kenngröße	Kleinst- wert	Größt- wert	Einstellwerte	Prüf- kate- gorie	Bewer- tungs- krite- rien	Meß- ver- fahren nach Ab- schnitt
A/D-Ausgangs-Impulsverhältnis o	-0,33	0,33	$\begin{array}{c} U_{30} = 4.5 \text{V} \pm 12.5 \text{mV} \\ U_{37}^* = 0.107 \text{V} \\ (-24 \text{dB} \pm .0.1 \text{dB}) \end{array}$	-	а	4.7.10., 4.7.21.
	-0,5	0,5	$egin{aligned} U_{28}: ADS-Impulse \ t_{26(6)}: I_{FT} = I_3 = \ 4 nA \pm 100 pA \ U_{35}^* = 0,107 V \ (-24 dB \pm 0,1 dB) \ U_{24}^* = U_{18}^* = \ 1,2 V \pm 2 mV \end{aligned}$	A, B,	К	
Ausgangsspannung T U_{41} V	1,1	1,3	$U_{30} = 4.5 \pm 12.5 \text{mV}$	Q	а	4.7.17.
	1,0	1,4	$ \begin{array}{l} I_{FT} = I_3^x = 1024 \text{ nA} \\ $		K	
Ausgangsspannung H U ₄₄ V	1,1	1,3	$U_{30} = 4.5 \text{ V} \pm 12.5 \text{ mV}$		а	4.7.17.
	1,0	1,4	$I_{FT} = 1024 \text{ nA} \pm 20 \text{ nA}$ $U_{24} = 1,2 \text{ V} \pm 2 \text{ mV}$		К	

2.3.2. Nebenkenngrößen Tabelle 2

Kenngröße	-	Kleinst- wert	Größt- wert	Einstellwerte	Prüf- kate- gorie	Bewer- túngs- krite- rium	Meß- ver- fahren nach Ab- schnitt
Konstantstrom FET _T I ₄ FET _B I ₁₂	μ Α μ Α	35	65	$U_{30} = 4,5 \text{ V} \pm 12,5 \text{ mV}$			4.7.15.
BMC-Ausgangsimpuls t ₂₇	ms	_; 0,07	2,7	$U_{30} = 4,5 \text{ V} \pm 12,5 \text{ mV}$ $I_{FT} = I_3 = 4 \text{ nA}$ $\pm 100 \text{ pA}$ $U_{18,24} = 1,2 \text{ V}$ $\pm 2 \text{ mV}$			4.7.10.
Ausgangsspannung CCN U ₂₆	V	3,00	_	$U_{30} = 3.6 \text{ V} \pm 12.5 \text{ mV}$ $U_{32}^* = 3.1 \text{ V} \pm 0.1 \text{ V}^{1)}$			4.7.16.
				$U_{30} = 3.6 \text{ V} \pm 12.5 \text{ mV} U_{32}^* = 4.1 \text{ V} \pm 0.1 \text{ V}^{1)}$	=		
		—	0,40	$U_{30} = 6.8 \text{ V} \pm 12.5 \text{ mV}$ $U_{32}^* = 10 \text{ V} \pm 0.1 \text{ V}^{1)}$	В, Q	a	ı
			·	$U_{30} = 6.8 \text{ V} \pm 12.5 \text{ mV}$ $U_{32}^* = 3.6 \text{ V} \pm 0.1 \text{ V}^{1)}$			
Ausgangsspannung TEF U ₃₃	V	3,00	_	$U_{30} = 3.6 \text{ V} \pm 12.5 \text{ mV}$ $U_{32}^* = 0.4 \text{ V} \pm 0.1 \text{ V}^{1)}$			4.7.18.
*			0,40	$\begin{array}{l} U_{30} = 6,8 V \pm 12,5 mV \\ I_{FB} = I_{11} = \\ 16 nA \pm 400 pA \\ U_{32}^* = 6,8 V \pm 0,1 V^{1)} \\ U_{35}^* = 0,30 V \\ (-15 dB \pm 0,1 dB)^{2)} \\ U_{20}^* - Abgleich \end{array}$			

Fortsetzung der Tabelle Seite 7

¹ siehe Seite 4 2 siehe Seite 4 3 siehe Seite 4

Fortsetzung der Tabelle 2

Kenngröße	Kleinst- wert	Größt- wert	Einstellwerte	Prüf- kate- gorie	Bewer- tungs- krite- rium	Meß- ver- fahren nach Ab- schnitt
Betriebsspannungsabhängigkeit der A/D-Impulslänge U ₂₆	-0,34	0,34	$\begin{array}{l} U_{30} = 4,5 \text{V} \pm 12,5 \text{mV} \\ U_{37}^* = 0,30 \text{V} \\ (-15 \text{dB} \pm 0,1 \text{dB})^3) \\ U_{35}^* = 1,7 \text{V} (0 \text{dB} \pm 0,1 \text{dB})^2) \\ t_{26(0)} : I_{FT} = I_3 = \\ 512 \text{nA} \pm 10 \text{nA} \\ t_{26(1)} : I_{FT} = I_3 = \\ 256 \text{nA} \pm 5 \text{nA} \\ t_{26(2)} : I_{FT} = I_3 = \\ 4 \text{nA} \pm 100 \text{pA} \\ U_{28} : ADS\text{-Impulse} \\ U_{24} = 1,2 \text{V} \pm 2 \text{mV} \\ U_{18} = 1,2 \text{V} \pm 2 \text{mV} \end{array}$			4.7.5., 4.7.10., 4.7.22.
Betriebsspannungsabhängigkeit der TEF-Impulslänge δU	0,70	1,42	$\begin{array}{l} U_{30} = 4,5 \ V \pm 12,5 \ mV \\ U_{35}^* = 0,60 \ V \ (-9 \ dB) \\ & \pm 0,1 \ dB\}^{(2)} \\ U_{32}^* = 0 \ V \pm 0,1 \ V \\ & \rightarrow 4,5 \ V \pm 0,1 \ V^{(1)} \\ t_{33 \ (0)} : I_{FB} = I_{11} = \\ 16 \ nA \pm 400 \ pA \\ t_{33 \ (1)} : I_{FB} = I_{11} = \\ 1024 \ nA \pm 20 \ nA \\ U_{20} - Abgleich \end{array}$	a	a	4.7.11., 4.7.14., 4.7.22.
Temperaturabhängigkeit der A/D-Impulslänge δΤ ₂	6	0,50	$\begin{array}{l} U_{30} = 4,5 \text{V} \pm 12,5 \text{mV} \\ U_{37}^* = 0,30 \text{V} \\ (-15 \text{dB} \pm 0,1 \text{dB})^3) \\ U_{35}^* = 1,7 \text{V} \\ (0 \text{dB} \pm 0,1 \text{dB})^2) \\ t_{26(0)} : I_{\text{FT}} = I_3 = \\ 512 \text{nA} \pm 10 \text{nA} \\ t_{26(1)} : I_{\text{FT}} = I_3 = \\ 256 \text{nA} \pm 5 \text{nA} \\ t_{26(2)} : I_{\text{FT}} = I_3 = \\ 4 \text{nA} \pm 100 \text{pA} \\ U_{28} : \text{ADS-Impulse,} \\ U_{18,24} = 1,2 \text{V} \pm 2 \text{mV} \end{array}$			4.7.5., 4.7.10 4.7.23.
Temperaturabhängigkeit der TEF-impulslänge δΤ.	3 0,50	2,00	$\begin{array}{l} U_{30} = 4.5 \text{V} \pm 12.5 \text{mV} \\ U^*_{35} = 0.60 \text{V} \\ (-9 \text{dB} \pm 0.1 \text{dB})^{2)} \\ U^*_{32} = 0 \text{V} \pm 0.1 \text{V} \\ \rightarrow 4.5 \text{V} \pm 0.1 \text{V}^{1)} \\ t_{33 (0)} : I_{FB} = I_{11} = \\ 16 \text{nA} \pm 400 \text{pA} \\ t_{33 (1)} : I_{FB} = I_{11} = \\ 1 024 \text{nA} \pm 20 \text{nA} \\ U_{20} \text{-Abgleich} \end{array}$			4.7.11., 4.7.14., 4.7.23.

¹ siehe Seite 4 2 siehe Seite 4 3 siehe Seite 4

2.3.3. Grenzwerte

Tabelle 3

Kenngröße		Anschluß	Kleinstwert	Größtwert
Betriebsspannung U ₃₀	V	30	-1,0	6,8
Spannungsbelastbarkeit U ₁	V	4 12	0	3
		8,15	$I_0 = 1 \text{ mA}$	_
. e ^j		20,22, 23,28, 35,37, 47,48	0	U ₃₀
Eingangsstrom I _I	mA	32	-2 .	2
	:	10	5	
		1,3 5,6 11,13 14		5
Ausgangsstrom l₀	mA	2	·	
-		21		0,5
		24	0	1
		34		2
		40		8
		41,44	-0,5	0,5
		17,19, 25	-1	0
		18,46		5
		26,27, 29,33	-5	. 0
		38	-8	
		39	-10	
Gesamtverlustleistung P _{tot}	mW			200
Umgebungstemperatur მ _a	' °C		-10	55

2.4. Klimatische Beständigkeit

Betriebstemperaturbereich

unterer Grenzwert der Umgebungstemperatur: -10°C oberer Grenzwert der Umgebungstemperatur: 55°C

2.5. Zuverlässigkeit

2.5.1. Prüfzuverlässigkeit

Prüfausfallrate λ_{P0,6} nach Angaben des Herstellers

2.5.2. Betriebszuverlässigkeit

Für den Einsatz in Bildaufnahmekameras gilt die Betriebsausfallrate $\lambda_{B0,6}$ nach Angaben des Herstellers. Die Bezugszeit für die $\lambda_{B0,6}$ -Berechnung ist die Kalenderzeit.

Sie muß mindestens 12 Monate (8760h) betragen. Die Betriebsausfallrate bezieht sich auf Funktionsausfälle der Geräte, die durch die IS verursacht werden. Als mittlere Beanspruchung gilt:

elektrisch:

 $U_{CC} = 6V$

klimatisch:

 $\vartheta_a = 40$ °C

maximale relative Feuchte: 80%; höchste damit koppelbare Umgebungstem-

peratur: 20°C

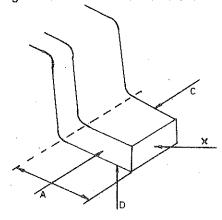
mechanisch: Beanspruchungsgruppe G2 nach

TGL 200-0057/04

Sonstige Beanspruchungen der IS müssen vernachlässigbar sein.

ABNAHMEREGELN

nach TGL 24951


PRÜFUNGEN

4.1. Nachweis der Lötbarkeit der Anschlüsse

nach TGL 39906/02, Methode 9031.1

Prüfung mit Lötbad Ta1, Eintauchen einer beliebigen Anschlußseite

Beurteilung: visuelle Kontrolle mit 10 bis 25facher Vergrößerung der lötbaren Fläche: Fehlstellen ≤ 10%

lötbare Flächen: A,C,D

4.2. Nachweis der Lötbeständigkeit

nach TGL 32377/02 in der Typprüfung Prüfmethode 9032.1, Verfahren A nach TGL 39906/03 Verweildauer: 10s

4.3. Nachweis der mechanischen Festigkeit

4.3.1. Anschlüsse

nach TGL 32377/02 in der Typprüfung Prüfmethode 1051 (Prüfung Ua 1) TGL 37837 Zugkraft: 1N

4.3.2. IS-Körper nach TGL 32377/02 in der Typprüfung Prüfklasse Eb 6-400-12000/3 nach TGL 200-0057/04

4.4. Nachweis der klimatischen Beständigkeit ---Feuchte Wärme

Lagerungsprüfung nach TGL 9206/01, Methode 2031.1 (Prüfung Ca)

Dauer: 10d

Nach der Beanspruchung müssen die IS die a-Werte der Hauptkenngrößen nach Tabelle 1 einhalten.

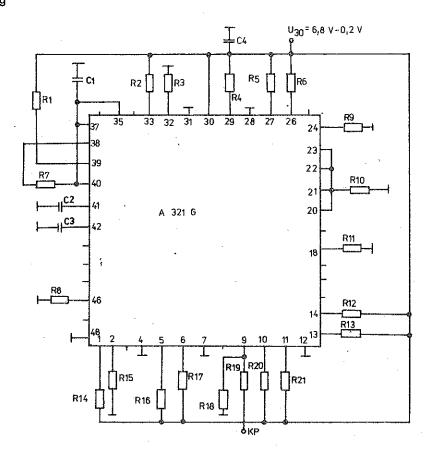
4.5. Nachweis der Prüfausfallrate

Die Prüfausfallrate ist durch eine elektrische Dauerbelastung nachzuweisen:

Belastungsbedingungen

Belastungsschaltung nach Bild 4

Sollspannung an KP: $U_{KP} = 1.8V \pm 0.2V$


Widerstandstoleranz: ±5%

Kondensatortoleranz: $^{+80\%}_{-20\%}$ Umgebungstemperatur $^{9}_{a} = 55$ °C \pm 3 K minimale Beanspruchungsdauer: 500h

Nach der Beanspruchung müssen die IS die a-Werte

der Hauptkenngrößen einhalten.

Belastungsschaltung

C1, C2, C3 = 100 nF $C4 = 4.7 \, \mu F$

 $R1 = 300 \Omega$

 $R2, R4, R5, R6 = 1,3 k\Omega$

 $R3 = 3 k\Omega$

 $R7 = 510 \Omega$

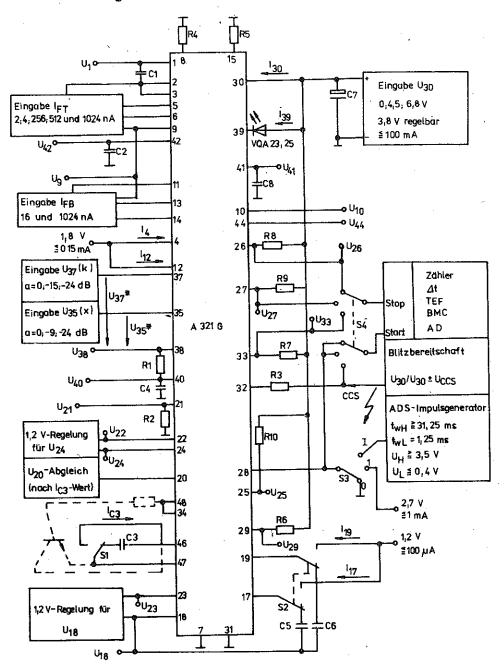
 $R8 = 3.3 k\Omega$

 $R\,9=2,2\,k\Omega$

 $R 10 = 1.2 k\Omega$

 $R 11, R 15 = 2 k\Omega$

 $R 12, R 17 = 1.5 k\Omega$


R 13, R 16, R 20, R 21 = 2,7 k Ω

 $R 14 = 560 \Omega$

 $R 18 = 1.8 k\Omega$

 $R 19 = 10 k\Omega$

4.6. Meßschaltung

C1	= 100 pF
C2, C4, C5,	·
C6, C8	= 100 nF
C3	= 1 nF
C7	= 4,7 μF
R1	$=$ 500 Ω
R2	$=$ 4,7 k Ω
R3	$=$ 22 k Ω
R4	$= 100 \mathrm{k}\Omega$
R5	$=$ 75 k Ω
R6, R8, R9	$=$ 33 k Ω
R7	$= 10 \mathrm{k}\Omega$
R 10	$=$ 1 M Ω
Toleranzen	•
	ıngen: ±2%
R1, R4, R5	; C 3, C 6, C 5:
±1%	•
übrige R un	d C: ±10%

Bild 5

4.7. Meßverfahren

4.7.1. Allgemeines

Der Hersteller hat durch seine Messungen die Größtund/oder Kleinstwerte abzusichern. Der Anwender darf einen Schaltkreis als fehlerhaft bezeichnen, wenn der Kleinst- und/oder Größtwert unter Einbeziehung der Meßunsicherheit des zur Überprüfung verwendeten Meßaufbaus unter- bzw. überschritten wird.

Die Kennwerte sind nach den in Tabelle 1 und 2 genannten Einstellwerten mit der Meßschaltung Bild 4 im eingeschwungenen Zustand zu messen.

In der Tabelle 4 sind die Gerätefehler und die maximalen zufälligen Fehler zusammengestellt.

Tabelle 4

Kenngröße	Gerätefehler	maximaler zu- fälliger Fehler		
l ₃₀	±0,1 mA	±0,3 mA		
U ₂₁	±1%	±2,5%		
U ₄₀	,	±1,5%		
U ₉	±1,5%	±2,5%		
U ₃₆ , U ₄₁ , U ₄₄ , U ₃₃	±0,5%	±1,5%		
U_{22}, U_{23}	±1,5%	±2%		
U ₃₀	±2,5%	±3%		
l ₁₇ , l ₁₉		±2,5%		
Δl_{17} , Δl_{19}	±4%	±5%		
U ₂₆ , U ₂₇ , U ₂₅	±5%			
I ₃₉ EIN	±2%	±2%		
AUS	±0,4 μA	±0,4 μA		
t ₂₆ , t ₂₇	±3%	±5%		
l ₄₆	±2,5%	±11%		
U ₂₀	±2%	±2,5%		
t ₃₃	±10%	±10%		
l ₄ , l ₁₂	±1%	±2%		
$\delta_L, \delta_K, \delta_X$	±5%	±7%		
δ_{U26} , δ_{T26}		±8%		
$\delta_{U33},\delta_{T33}$	±10%	±12%		

4.7.2. Betriebsstrom I₃₀ nach TGL 31487/07, Verfahren A

4.7.3. Referenzspannungen U₉, U₂₁, U₃₈

Zwischen dem Referenzspannungsanschluß (9, 21, 38) und dem Anschluß 7 wird ein Spannungsmesser geschaltet. Dabei sind die Quellen entsprechend Bild 4zu belasten (U9 ohne Last; U21 mit 4,7k Ω gegen Anschluß 7; U38 mit 500 Ω gegen Anschluß 40).

4.7.4. Stabilisierte Spannung U₄₀

Zwischen den Anschlüssen 40 und 7 wird ein Spannungsmesser geschaltet. Dabei ist entsprechend Bild 4 mit 500Ω zwischen den Anschlüsse 40 und 38 vorzubelasten.

4.7.5. Justagespannungen U₂₂, U₂₃

Es wird die Spannung zwischen den Anschlüssen 22 bzw. 23 und 7 gemessen. Beide Spannungen werden durch Regelkreise so eingestellt, daß die Ausgangsspannung zwischen den Anschlüssen 24 bzw. 18 und 7 jeweils 1,200 V beträgt.

4.7.6. Unterspannungskontrolle U₃₀ (PSC)

Die Betriebsspannung U_{30} wird so lange verringert, bis das Ausgangspotential am Anschluß 29 von L-Pegel in H-Pegel übergeht.

Nach der Umschaltung wird der Wert der Betriebsspannung zwischen den Anschlüssen 30 und 7 gemessen. Anschluß 29 muß entsprechend Bild 4 extern mit $33\,\mathrm{k}\Omega$ gegen Anschluß 30 beschaltet werden.

4.7.7. Konstantströme I₁₇, I₁₉

Zur Messung der Konstantströme l_{17} bzw. l_{19} wird ein Strommesser zwischen die Anschlüsse 17 bzw. 19 und 18 geschaltet.

4.7.8. Rampenstromdifferenz Δl₁₇, Δl₁₉

Es wird die Differenz der Konstantströme I_{17} bzw. I_{19} bei $U_{30}=6,8\,V$ und $U_{30}=3,6\,V$ bestimmt (s. 4.7.7.).

 $\begin{array}{l} 3_{30} \\ \Delta I_{17} = I_{17} (U_{30} = 6.8 \text{V} \pm 12.5 \text{mV}) - I_{17} (U_{30} = 3.6 \text{V} \pm 12.5 \text{mV}) \\ \Delta I_{19} = I_{19} (U_{30} = 6.8 \text{V} \pm 12.5 \text{mV}) - I_{19} (U_{30} = 3.6 \text{V} \pm 12.5 \text{mV}) \end{array}$

4.7.9. Ausgangspegel U₂₆, U₂₇

Es wird jeweils ein Widerstand 33k Ω von den Anschlüßsen 26, 27 gegen Anschluß 30 geschaltet (s. Bild 4). Der Pegel der Ausgangsspannungen U_{26} und U_{27} wird mit je einem Komparator mit umschaltbarer Schaltschwelle ($U_L=0.4V\pm10\,\text{mV}$,

 $U_{H}=3.5\,V\pm10\,mV$, bezogen auf Anschluß 7) bewertet

4.7.10. AD-Impuls t_{26} , BMC-Impuls t_{27}

An den Anschluß 28 wird für die Dauer von 2 ms ein L-Impuls ($U_{28L} \le 0.4V$, bezogen auf Anschluß 7) gegeben und die Zeit vom Ende dieses L-Impulses bis zum Ende des daraus entstandenen L-Zustandes des Ausgangspegels U_{26} bzw. U_{27} gemessen.

4.7.11. Integratorstrom I₄₆

Es wird ein Strommesser zwischen die Anschlüsse 46 und 47 geschaltet und die Justagespannung U_{20} schrittweise nach dem Verfahren der sukzessiven Approximation so eingestellt, daß der Integratorstrom I_{46} dem Sollwert (190 nA) entspricht.

4.7.12. LED-Strom I₃₉

Vom Anschluß 39 wird zur Betriebsspannung U_{30} und in Reihe mit einer LED VQA25 ein Strommesser geschaltet.

4.7.13. Justagespannung U₂₀

Nach erfolgtem Abgleich des Integratorstromes l₄₆ (vgl. 4.5.11.) wird die Spannung zwischen den Anschlüssen 20 und 7 gemessen.

4.7.14. TEF-Impuls t₃₃

Die TEF-Impulslänge t₃₃ ist die Zeit von der L/H-Flanke des am Anschluß 32 eingespeisten CCS-Signals bis zum Ende des HIGH-Zustandes des Ausgangspegels U₃₃.

4.7.15. Konstantströme I₄, I₁₂

Es wird ein Strommesser vom Anschluß 4 bzw. 12 zum Potential U_9 (Anschluß 9) geschaltet.

4.7.16. CCN-Pegel U₂₅

Zwischen die Anschlüsse 25 und 30 wird ein Widerstand 1 M Ω geschaltet. Mit einem Komparator mit umschaltbarer Schaltschwelle (U_L = 0,4V, U_H = 3,0V, bezogen auf Anschluß 7) wird der CCN-Pegel U₂₅ bewertet.

4.7.17. Ausgangsspannungen U41, U44

Zwischen den Anschlüssen 41 bzw. 44 und 7 wird ein Spannungsmesser geschaltet.

4.7.18. TEF-Pegel U₃₃

Es wird ein Widerstand $10\,k\Omega$ zwischen den Anschlüssen 33 und 7 geschaltet. Der TEF-Pegel U_{33} wird mit einem Komparator mit umschaltbarer Schaltschwelle ($U_L=0.4V,\ U_H=3.0V,\ bezogen\ auf\ Anschluß\ 7)$ bewertet.

4.7.19. AD-Ausgangsimpulsverhältnis σ_L Wird aus den Einstellgrößen nach folgender Formel ermittelt:

$$\sigma_L = 7 \cdot \frac{t_{26}(1) - t_{26}(0)}{t_{26}(2) - t_{26}(0)}$$

4.7.20. AD-Ausgangsimpulsverhältnis σ_K Wird nach folgender Formel berechnet:

$$\sigma_{K} = 7 \cdot \frac{t_{26}(3) - t_{26}(4)}{t_{26}(2) - t_{26}(0)}$$

4.7.21. AD-Ausgangsimpulsverhältnis σ_X Wird nach folgender Formel bestimmt:

$$\sigma_{X} = 7 \cdot \frac{t_{26}(5) - t_{26}(4)}{t_{26}(2) - t_{26}(0)}$$

4.7.22. Betriebsspannungsabhängigkeiten $\delta_{U\,26}$, $\delta_{U\,33}$ Handabgleich für die Justagespannungen U_{22} und U_{23} (s. 4.7.5.) und den Integratorstrom I_{46} (s. 4.7.11.) bei der ersten Messung am Bauelement; Absenken der Komparatorschwelle für U_{26} auf $U_H=3.0$ V \pm 2% bei $U_{30}=3.3$ V (s. 4.7.9.)

a) δ_{U 26}

Zunächst wird bei $U_{30} = 4,5 \text{V} \pm 12,5 \text{mV}$ die Größe

$$\Delta t = \frac{t_{26}(2) - t_{26}(0)}{7}$$

bestimmt.

δ_{U 26} wird nach folgender Formel errechnet:

$$\begin{split} \delta_{U\,26} &= \frac{t_{26}(n)(U_{30} = 6.8 \pm 12.5\,\text{mV})}{\Delta t} \\ &= \frac{t_{26}(n)(U_{30} = 3.3\,\text{V} \pm 12.5\,\text{mV})}{\Delta t} \end{split}$$

 $f\ddot{u}r n = 0 und n = 2$

b) δ_{U 33}

Wird nach folgender Formel bestimmt:

$$U\,33 = \frac{t_{33}(n)(U_{30} = 6.8\,V \pm 12.5\,mV)}{t_{33}(n)(U_{30} = 3.3\,V \pm 12.5\,mV)}$$

 $f\ddot{u}r n = 0 \text{ und } n = 1$

4.7.23. Temperaturabhängigkeiten δ_{T26} , δ_{T33} Handabgleich für die Justagespannungen U_{22} und U_{23} (s. 4.7.5.) und den Integratorstrom I_{46} (s. 4.7.11.) bei der ersten Messung am Bauelement (9 = 25°C)

a) δ_{T26} Zunächst wird bei $\vartheta = 25$ °C die Formel

$$\Delta t = \frac{t_{26}(2) - t_{26}(0)}{7}$$
 bestimmt.

 $\delta_{T\,26}$ wird nach folgender Formel für die Temperaturwerte

$$\vartheta_a \stackrel{\mathfrak{x}}{=} -10^{\circ}\text{C} \text{ und } \vartheta_a = 55^{\circ}\text{C bestimmt}$$
:

$$\delta_{T26} = \frac{t_{26}(n)(\vartheta_a) - t_{26}(n)(25^{\circ}C)}{\Delta t}$$

 $f \ddot{u} r n = 0 \text{ und } n = 2$

b) δ_{T33} Wird nach folgender Formel für $\vartheta_a = -10\,^{\circ}\text{C}$ und $\vartheta_a = 55\,^{\circ}\text{C}$ bestimmt:

$$\delta_{T33} = \frac{t_{33}(n)(\vartheta_a)}{t_{33}(n)(25\,^{\circ}\text{C})}$$

 $f\ddot{u}r n = 0 und n = 1$

4.8. Nachweis der Fluß- und Waschmittelbeständigkeit

4.8.1. Flußmittelbeständigkeit nach TGL 32377/02, Methode 1

4.8.2. Waschmittelbeständigkeit nach TGL 32377/02, Methode 2

5. TRANSPORT UND LAGERUNG

nach TGL 24951

Hinweise

Im vorliegenden Standard ist auf folgende Standards Bezug genommen:

TGL 9206/01; TGL 24951; TGL 26713; TGL 31487/07; TGL 32377/02; TGL 37837; TGL 39906/02 und /03; TGL 200-0057/04