
Servoschaltkreis B 654 D

Dipt.-ing. KLAUS WALLSTAB

Mitteitung aus dem VEB Gleichrichterwerk Stahnsdorf

Anwendung

Der B 654 D ist ein monolithisch integrierter Schaltkreis mit Brückenschaltung zur digital-proportionalen Verarbeitung der in elektrische Signale umgesetzten Führungsgröße für die Ansteuerung von Kleinstelektromotoren in einer Abtastregelschaltung. Er wird vorzugsweise in elektronisch gesteuerten Rudermaschinen eingesetzt.

Abmessungen

und Anschlußbelegung

siche Bild 1 DIL-Plastgehäuse

Gehäuse

21.2.1.2.14 nach TGL 26.713

Bauform Masse

≨ 1,5 g

Erzeugnisstandard

Fachbereichstandord TGL 38 008

Grenzwerte, gültig für den Betriebstemperaturbereich

Kenswert	min,	max.
Betriebsspannung Uce in V	3,8	7,0
Eingongsspannung U ₁₃ in V	5.0	U_{cc}
Eingangssperrspannung U ₄ in V	0	5,0
Ausgangsstrom des monostabilen Multivibrators las	,	
in mA	- ···.	5,0
Ausgangsstrom des Impedanzwandlers loz in mA	_	1,0
Ausgangsstrom Ins in mA		50
Ausgangsstrom Inte in mA		20
Ausgangsstrom Invita in mA		500
Ausgangsstrom —I _{10/12} in mA	_	500
Ausgongsdoverstrom f _{10/12} in mA		400
AusgangsdauerstromI _{10/12} in mA		400
Gesamtverlustleistung Prot		
bei ∂ _u 55 °C		850
Sperrschichttemperatur #j in °C		150
Betriebstemperaturbereich #, in °C	·15	55

Bild 1: Abmessungen und Anschlußbelegung 1 Eingang des Impedanswandlers 2 Ausgang des Impedanzwandlers 3 Eingang für Fährungsimpuls 4 Betriebsspannung Ucc 5 Ausgang des monostabilen Multivibrators 6 Eingang des monostabilen Multivibrators 7 Anschluß für externe Totzeiterzeugung 8, 14 Anschluß zur Einstellung der Impulsdehnung (Kreisverstärkung) 9, 13 nicht belegt 10, 12 Ausgang der Brückenschaftung 11 Masse

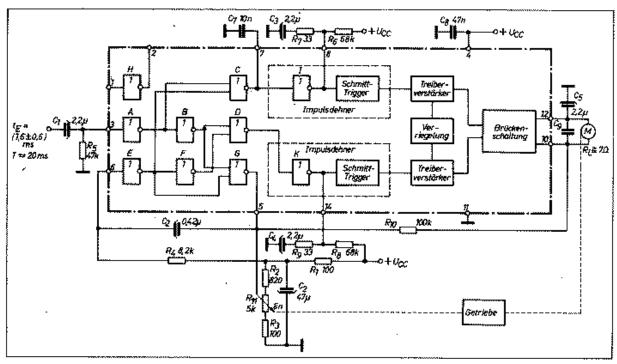


Bild 2: Blockscholtbild mit Außenbeschaltung

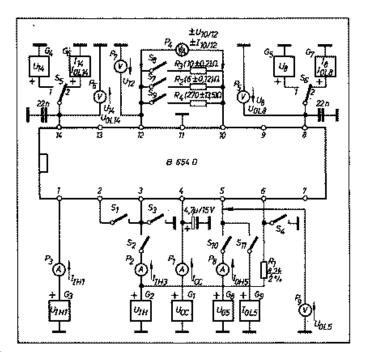


Bild 3: MeBschaltung. Zur Gewährleistung der dynomischen Stabilität kann eine kapazitive Beschaltung mit C == 10 nF gegen Masse an atlen Anschlüssen vorgenommen werden

Funktionsbeschreibung

Der Schaltkreis B 654 D beinhaltet eine digital-proportionale Abtastregelschaltung mit internen Leistungstransistaren für eine Motorsteuerung. Als Führungsgröße liegt am Eingang A3 der Schaltung ein Impuls mit variabler Impulsbreite (im typischen Fall 1,6 ms \pm 0,6 ms und Folgefrequenz 40...70 Hz) an. Die Breite des als Referenzimpuls verwendeten und von einem monostabilen Multivibrator in Abhängigkeit von der am Geberpotentiometer anliegenden Spannung erzeugten Impulses wird mit der Eingangsimpulsbreite verglichen. Die Impulsdifferenz wird durch die Impulsdehner in einen mittleren Motorstrom umgesetzt, so daß durch die über das Getriebe bewirkte proportionale Drehwinkel- bzw. Stellwegfolgeregelung des Geberpotentiometers ein Impulsbreitenabgleich erfolgt und der Motor seinen stramlosen Zustand erlangt. Zur Verringerung des Eingangsstromes kann der Emitterfolger (A1, A2) vorgeschaftet werden.

Hauptkennwerte, gültig für #a == 25 °C == 5 K

Кеппдтößе	Einstellwerte	x · 2 ∘	¥	x √ 2 a
	$U_{\rm em} = (5 \pm 0.1) \text{ V}_{\rm f}$			
	A5 offen;			
	$I_{3} \approx I_{14} = (100 \pm 10) \ \mu A$			
Betriebsruhestrom				
Icra in mA	A3 on A11 (Masse)			
	$U_{HI} = (1.5 \pm 0.03) \text{ V}$			
	Um über R ₁ an A6	5,0	6,5	7,1
Betriebsstrom				
l _{ec} , in mA	A3, A6 on A11 (Mosse)			
	R _L ∞ ∞	30,3	33,3	36,3
les in mA	U ₁₁₁ == (1,5 ± 0,03) V			
	R _{1.} ∞	31.1	34,1	37,3
Eingangsstrom				
liita in #A	U _{III} :== (1,5 ± 0,03) V	108	123	138
Ausgangsdifferenz-				
spanning U _{10/52} In V	A3, A6 on A11 (Mosse)			
	$R_3 = (10 \pm 0.2) \Omega$	3,47	3,55	3,63
-∲U _{igog} in V	U ₁₁₁ === (1,5 ± 0,03) V			
	R ₃ (10 ± 0,2) Ω	3,47	3,55	3,63
Ausgangsdifferenz-				
spannung (t ≲ 5 s:				
$\frac{t}{T} \le 0.1$				
U _{10/12} In V	A3, A6 an A11 (Masse)			
	R ₂ == (6 ± 0,12) Ω	3,0	3,2	3,4
÷U _{10/42} in V	$U_{10} \approx (1.5 \pm 0.03) \text{ V}$			
	$R_z = (6 \pm 0.12) \Omega$	3,0	3,2	3,4

Nebenkennwerte, gültig für ∂a № 25 °C -- 5 K

Kenngräße	Einstellwerte $U_{G(1)} = (5 \pm 0.1) \text{ V}$	ž 2 n	ķ	ž † 2 a
Eingangsstrom				
lun in µA	$U_{\rm titl} = (2.5 \pm 0.05) \text{ V}$ A2 on A3; A 6 on A11	5	10	15
obere Schwellen-	• • •			
spannung U _a in V	A3 on A11 (Mosse) U _{1R} = (1,5 ± 0,03) V I _M = (100 ± 10) "A			
	Us erhöhen bis U10	1 80		4 30
U _{ia} in V	≲ 3,2 V A3 on A11 (Mosse) U _{III} == (1,5 ± 9,03) V	1,22	1,26	1,30
	$I_{\delta} = (100 \pm 10) \mu A$ U_{14} erhöhen bis U_{12}			
	≲ 3,2 V	1,15	1,21	1.27
Ausgangsreststrom				•
lenis in #A	A3 on A11 (Masse) $U_{16} = (1.5 \pm 0.03) \text{ V}$			
	$I_6 = I_{14} = (100 \pm 10) \text{ pA}$ $U_{1015} = (5,0 \pm 0,1) \text{ V}$	0	0,03	0,10
Ausgangs-L-Spannung	+1)112 (610 T 211)	•	5,45	4,.4
U _{01,5} in mV	Utili == (1,5 ± 0,03) V			
	$I_{OLS} = (2.5 \pm 0.05) \text{ mA}$			
	$I_8 = I_{14} = (100 \pm 10)~\mu \text{A}$	333	359	385
Ausgangssperrstrom				
in uA	A3 on A11 (Masse)			
	Una == (1,5 ±; 0,03) V			
	$I_b = I_{54} = (100 \pm 10) \mu A$			
	$U_{10} = \{2,5 \pm 0,4\} \ V$	0,4	0	0,4
Ausgangsmitten-	** *** *** *			
spannung U _{12/11} in V	A3 on A11 (Mosse)			
	$U_{HI} = \{1.5 \pm 0.03\} \text{ V}$ $I_b = I_{II} = \{100 \pm 10\} \text{ pA}$	7.42	2.45	2 47
Ausgangs-L-Spannung	$A = 10 = (100 \pm 10) / A$	2.43	2,45	2,47
U _{ota} in V	Unit == (1,5 ± 0,03) V			
-1/1.g *	l _{DLS} == (10,0 ± 0,5) mA	tin	122	134
U _{cti.14} in V	A3, A6 on A11 (Masse)			
	l _{OE14} == (10,0 ± 0,5) mA	112	120	128

Die angegebenen Werte sind Mittelwerte und gebon Streugrenzen an. Garantierte Größt- bzw. Kleinstwerte sind dem Erzeugnisstand zu entnehmen.

In den Bildern 6 bis 17 ist die Betriebssponnungs- und Temperaturabhängigkeit ausgewählter Kenn- und Informationsgrößen dargestellt. Die Bilder 18 und 19 zeigen die Abhängigkeit des mittleren Ausgangsstromes der Brückenschaltung von der Impulsdifferenz bei verschiedener Außenbeschaltung.

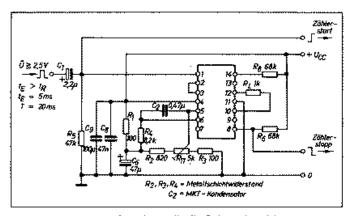


Bild 4: Dynamische Maßschaltung für die Referenzimpulsbreite

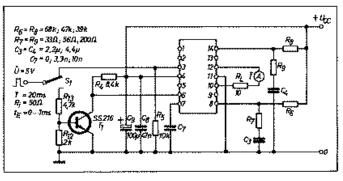


Bild 5: Dynamische Meßschaltung für die Impulsdehnung

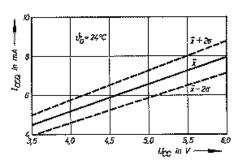


Bild 6: Betriebsruhestrom $\mathbf{1}_{CCQ}$ als Funktion der Betriebsspannung \mathbf{U}_{CC}

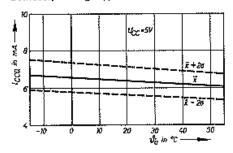


Bild 9: Betriebsruhestrom als Funktion der Umgebungstemperatur θ_0

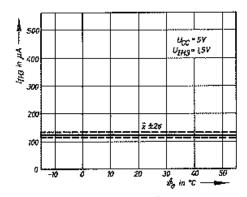


Bild 12: Temperaturabhängigkeit des Eingangs-

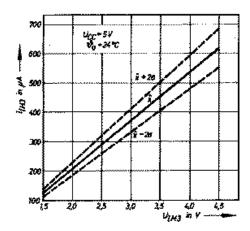


Bild 15: Eingangsstrom $I_{\rm BH}$ als Funktion der Eingangsspannung $U_{\rm BH}$

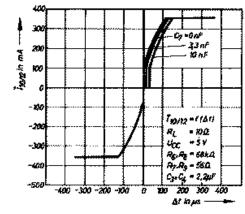


Bild 18: Mittelwort des Ausgangsstromes als Funktion der Impulsdifferens .1t

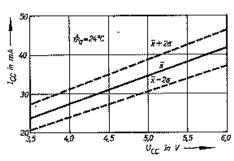


Bild 7: Betriebsstrom $I_{\rm CCC}$ bzw. $I_{\rm CC}$ ats Funktion der Betriebsspannung

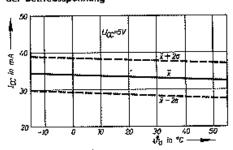


Bild 10: Betriebsstrom als Funktion der Umgebungstemperatur

Bild 13: Eingangsstrom $t_{\rm BH}$ als Funktion der Eingangsspannung $U_{\rm BH}$

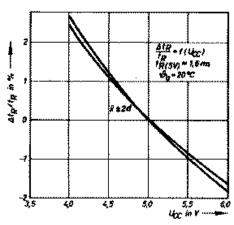


Bild 16: Betriebsspannungsabhänigkeit der Referensimpulsbreite \mathbf{t}_{ij}

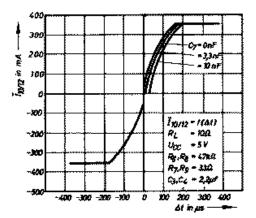
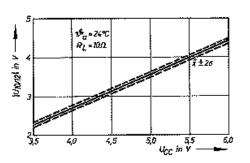



Bild 19: Mittelwert des Ausgangsstromes als Funktion der Impubidifferenz .1 t

8ild 8: Ausgangsdifferenzspannung $\pm U_{1022}$ bzw. $\pm U_{1022}$ als Funktion der Betriebsspannung

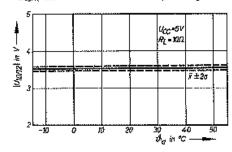


Bild 11: Ausgangsdifferenzspannung als Funktion der Umgebungstemperatur

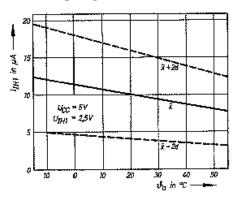


Bild 14: Temperaturabhängigkeit des Eingangs-

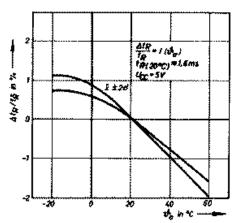


Bild 17: Temperaturabhängigkeit der Referenzimpulsbreite