

Integrierter Schaltkreis zur Ansteuerung von Leistungsendstufen für gechopperte Schrittmotoren und Magnete bei symmetrischem oder asymmetrischem Betrieb. Der Schaltkreis enthält zwei getorte Komparatoren und zwei Logikblöcke mit antivalenten Treiberausgängen. Mit Hilfe eines Sperreinganges können die vier Treiberausgänge auf Masse gelegt werden.

Abmessungen in mm und Anschlußbelegung:

A00A688

12345	000 000	Synchronisationseingang Komparatorausgang Komparatoreingang Komparatoreingang negative Betriebs-	Sy 1 A 1 K 2 K 1 U _S
6 7 8 9	500	spannung Komparatoreingang Komparatoreingang Komparatorausgang Syrehronisationseingang	K 3 K 4 A 4 Sy 2

10 - Eingang E 2
11 - Eingang Sp
12 - Ausgang A 6
13 - Ausgang A 5
14 - Masse
15 - Ausgang A 2
16 - positive
Betriebsspannung US+
17 - Ausgang A 3

18 - Eingang E 1

Logik: positiv

Logische Funktionen: A 1 = K 2 · Sy 1 mit K 2 = K 1

A 2 = Sp . E 1

A 3 = Sp . B 1

 $A \Rightarrow K + \cdot Sy + 2$ mit K + = K + 3

45 = Sp . E 2

A6 = Sp · E2

Gehäuse:

DII-Plastgehäuse

Bauforma

21.2.1.2.18 nach TGL 26 713

Masse:

≨ 1,5 g

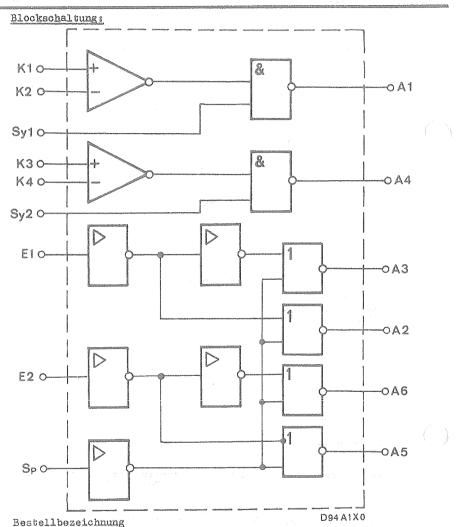
Typstandard: TGL 38 013

Grenzwerte, gültig für den Betriebstemperaturbereich

		min	max	
Positive Betriebsspannung	u _{S+}		7	A
Negative Betriebsspannung	us-		-7	A
Eingangsspannungsdifferenz zwischen K 1 und K 2 oder K 3 und K 4	70 ^{IK}		6	V
Fingangsspannung an K 1, K 2, K 3 oder K 4	UIK	∞ 5	+5	A
Fingangsspannung an Sy 1 oder Sy 2	u _{ISy}	0	5,5	V
Eingangsspannung an E 1, E 2 oder Sp	a ^{IE}	0	+Us	
Ausgangeströme	$q_{\mathbf{ZL}}^{\mathbf{U}}$	0	+Us	
in den Ausgang A 1 oder A 4	$I^{O\Gamma}$		20	mA
in den Ausgang A 2, A 3, A 5 oder A 6	ÎOL ÎOL		55 ¹ 70 ²) _{mA}) _{mA}
aus dem Ausgang A 1 oder A 4 3)	IOH		⊸7 0	mΑ
Maximale Dauerverlustleistung der Ausgangstransistoren der Ausgänge A 2, A 3, A 5 oder A 6 bei H-Zustand tav max \$\frac{1}{2}\$ 10 ms	P _V		150	mW
Maximale Impulsverlustleistung der	- V			
Ausgangstransistoren der Ausgänge A 2, A 3, A 5 oder A 6 bei H-Zustand 4)	$\widehat{\mathbb{P}}_{\overline{V}}$		300	mM
Zulässiger Arbeitsbereich	730%		1000	69
ης = 0 +25 °C ης = +70 °C	Pytot		1330 730	Wai Tm
* C	$^{ ext{P}}_{ ext{V}_{ ext{a}}}$	0	+70	°C
Betriebstemperaturbereich	°a.	9	,,,	-

Statische Kennwerte	(Pa	83	+5 °C +70 °C,
	U _{R+}	S	4,75 V 5,25 V,
	US=	201	4,75 V −5,25 V)

		min	max
H-Eingangsstrom in K 1, K 2, K 3 oder K 4	ITHK		75 paa
$U_{S} = \pm 5,25 \text{ V} \pm 19 \text{ mV}, U_{IK} = 0,5 \text{ V},$ $U_{IH} = -3 \text{ V} \cdots +3 \text{ V}$			
L-Eingangsstrom aus K 1, K 2, K 3 oder K 4	IILK	~10	дід
$U_{S} = \pm 5,25 \text{ V}, U_{IK} = -2 \text{ V}, U_{IH} = -3 \text{ V} \cdot \cdot \cdot \cdot +3 \text{ V}$			14 S
H-Eingangsstrom in Sy 1, Sy 2, E 1, E 2 oder Sp	IH	40	10 ³ да
$U_{IH} = 2,4 \text{ V}, U_{S} = \pm 5,25 \text{ V}$			
I-Eingangsstrom aus Sy 1 oder Sy 2 US = ± 5,25 V, UII = 0,4 V	IIL	-1 ,6	mΔ
L-Eingangsstrom aus E 1, E 2 oder Sp $U_S = \pm 5,25 \text{ V}, U_{IL} = 0,4 \text{ V}$	IIL	-10	. pA
H-Ausgangsspannung an A 1 oder A 4 $U_S = \pm 4,75 \text{ V}, I_{OH} = -1,2 \text{ mA}$	uOH	2,4	V
H-Ausgangsspannung an A 2, A 3, A 5 oder A 6	u_{OH}	2,4	Α
$U_S = \pm 4,75 \text{ V}, I_{OH} = -50 \text{ mA}$			


min	max	
	0,4	A
	0,4	A
	-50	mA
	70	
≈ 26		mA
		0 ₉ 4 0 ₉ 4 ~50

¹⁾ tay \$ 20 ms

²⁾ tp £ 10 ms

³⁾ Nicht mehr als einen Ausgang gleichzeitig für maximal 1 ms gegen Masse kurzschließen. Die Periodendauer darf 60 s nicht unterschreiten.

⁴⁾ Die Verlustleistung P_V der Ausgangstransistoren ist wie folgt zu berechnen: $P_V = |I_{OH}| \cdot U_{OE}$ bei $U_{CE} = +U_S - U_{OH} - O_{?}$ V

für einen Schaltkreis D 394 D: Integrierter Schaltkreis D 394 D TGL 38 013

Anderungen vorbehalten!

IG 140/2/81 III/18/397