Schlüssel-Nr. ELN: 137 87 71 0

Hersteller:

HFO

ME = Stück (076)

Schaltkreis E 412 D

Bipolarer kurzschlußfester Treiberschaltkreis

Erzeugnisstandard: TGL 39000

Preisbildung: PAO 382

Bilanzorgan:

Ubergeordnetes Organ:

HFO KME HFO

Entwicklungsstelle: Importeur:

Lieferquelle:

HFO, MBH

Bezugseinschränkung:

Garantie:

TGL 24951

Standards über Einsatzbedingungen: Internationale Standards und Empfehlungen: Grundlagenstandards:

ZAK-Nr. 137 87 71 009 Typ

Gehäuseart

412085

E 412 D

Plast

Bezeichnungsbeispiel: Scholtkreis E 412 D im Plastgehäuse

Bezeichnung:

SCHALTKRESS E 122 D - 1254 PC

ZAK-NR. 137 82 70 103 74 7038.

E 412 D

Technische Charakteristik

Verwendung

Bipolarer kurzschlußfester Treiberschaltkreis für den prozeßnahen Einsatz in industriellen Steuerungen, 3 UND-Gatter mit Tri-state Ausgang

Logische Funktion

Lan T: $Y1 = A1 \cdot B1 \cdot \overline{D1}$

 $Y2 = A2 \cdot B2 \cdot D2$

 $Y3 = A3 \cdot \overline{D3}$

Masse: ca. 1,5 g

Geometrische Abmessungen (Maßbild, Bauform): 21.2.1.2.18

Bauform nach TGL 26713 s. S. 137 87/0.7/1 ff.

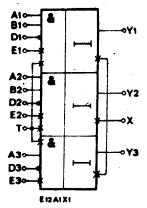
Konstruktiver Aufbau Bipolarer Digitalschaltkreis mit 2 x 9 Anschlußkontakten im 2,5-mm-Rastermaß für den Einsatz in gedruckten Schaltungen

Lieferform: geordnet in Falt- bzw. Schiebeschachteln

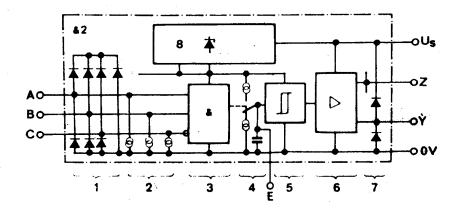
Maßnahmen zur Sicherung der Funktionstüchtigkeit Einbau- und Lötvorschriften s. S. 137 87/7/3...6

Einbaulage: beliebig

Anwendungstechnologien und Behandlungsvorschriften Einbau- und Lötvorschriften s. S. 137 87/7/3...6

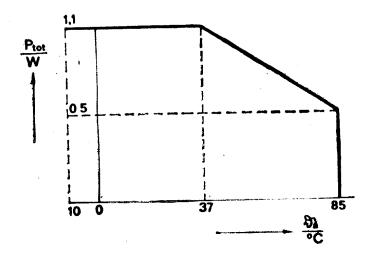

Schaltung

Anschlußbelegung


Logische Schaltung

E 12 A 1 52

H an T: Y1 = Y2 = Y3 = Tri-state


Blockschaltbild einer UND-Funktion

- I Eingangsschutzschaltung
- Eingangsstromsenken UND-Verknüpfung
- 4 Verzögerungsstufe 5 Schmitt-Trigger

- Ausgangsstufe, kurzschlußfest gegen U_{CC} und Masse, Tri-state-Ausgang
 Ausgangsschutzschaltung
- gemeinsame Spannungsver-sorgung für alle 3 UND-Funktionen

Leistungsreduktionskurve

E 412 D Grenzwerte, gültig für den Betriebstemperaturbereich

Kennwert		Kleinst- wert	Größt- wert	
Betriebsspannung	n _{CC}	0	35	v
Begrenzspannung	$\mathbf{U}_{\mathbf{X}}^{\mathbf{CC}}$	0	35	V
Eingangsspannung an A, B, D	$\mathbf{U}_{\mathbf{I}}^{\mathbf{A}}$	-0,15	44	V
Spannung an T	$\mathbf{U_{IT}^{1}}$	-0.15	$5,5^{2}$)	\mathbf{v}
Eingangsspannung vor Schutzwiderstand 5,6 kΩ an A, B, D	11		. ,	
— dauernd	$\mathbf{U}_{\mathbf{I}}$	-30	50	V
$- f\ddot{u}r = 6 \mu s \text{ und}$ $= 300 \text{ Hz}$	U	-300	300	V
- für = 12 μ s und = 300 Hz	$\mathbf{U}_{\mathbf{I}}$	-150	150	V
Ausgangsspannung an Y vor Schutzwiderstand 560				
- für = 6μ s und = 300 Hz	σ_{O}	-300	300	v
- für = 12μ s und = 300 Hz	u_{O}	-150	150	V
Spannung an E	•			
bei U _I und U _O 0,15 V bei U _I und/oder U _O	U _{IE}	-0,15	6,03)	V
-0,15 V vor				
Schutzwiderstand	U_{IE}	keine Spannı	ing zulässig	
Verlustleistung		•	-	
— bei 9 _a = 37 °C — bei 9 _a = 37 °C	P_{tot}	siehe Kennlii	nien S . 137 87/1	7.1/259

E 412 D

Kennwert		min.	max.	Einheit
Wärmewiderstand Sperrschicht-Luft	R _{thia}		80	K/W
Sperrschichttemperatur	j		125	°C
Umgebungstemperatur	$\boldsymbol{\vartheta}_{\mathbf{a}}$	10	85	°Ċ
Kurzschluß der Ausgänge	u	Unter Beachtung von P _{tot} gegen U _{CC} und Masse erlaubt.		

Betriebsbedingungen

31. 12. 1983/HFO

Kennwert		min.	max.	Einheit
Betriebsspannung	U _{CC}	14	32	v
L-Eingangsspannung an A, B, D	$U_{ m IL}$		5	v
H-Eingangsspannung an A, B, D	U _{IH}	7,5		V.
Eingangsspannung vor Schutzwiderstand 5.6 k Ω an A, B, D	U _I	—5 ⁴)	44	v
Begrenzerspannung	U_X		30	\mathbf{V}
Spannung an T Ausgänge aktiv Ausgänge Tri-state	U _{ITA} U _{ITT}	2,0	0,8	V V
Betriebstemperaturbereich Ausgangslastfaktor	ϑ_a	— 10	85	°C

- ²) Die Spannung $U_{|T}$ darf > 5,5 V sein, wenn der Strom in T auf $I_{|T}$ = 3 mA begrenzt wird.
- 3) Die Spannung an E darf bis auf $U_{IE}=8\,V$ erhöht werden, wenn der Strom in E auf $I_{IE}\leqq0.5\,\text{mA}$ begrenzt wird.
- 4) Störspannung. Im Dauerbetrieb sind negative L-Spannungen nicht zulässig.

E 412 D

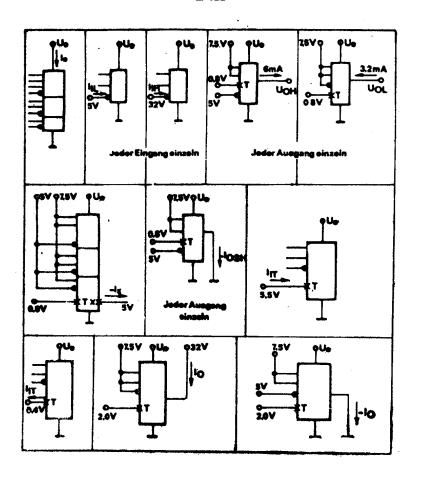
Statische Kennwerte: $(\vartheta_a = -10...+85 \,^{\circ}\text{C})$

14 V 24 V 32 V		5,9 6,1 6,2		mA mA
24 V 32 V				mA
32 V				
			12	mA
24 V, $U_{IL} = 5 V$	100	140	300	μΑ
24 V, $U_{IH} = 32 V$	100	150	300	μΑ
$24 \text{ V}, \text{U}_{\text{IT}} = 0.4 \text{ V}$		0,1	40	. μΑ
24 V, $U_{IT} = 5.5 V$		2,0	40	μΑ
	A			
		0,3	0,5	V
7;5 V an A, B	A			
0,8 V	11	11,8		\mathbf{v}
22 V	-			
Van D				
	24 V, U _{IT} = 5,5 V 32 V, I _{OL} = 3,2 mA 7,5 V an A, B, D 9,8 V 14 V, —I _{OH} = 6 mA 7,5 V an A, B 5 V an D 10,8 V	24 V, U _{IT} = 5,5 V 32 V, I _{OL} = 3,2 mA 7,5 V an A, B, D 9,8 V 14 V, —I _{OH} = 6 mA 7,5 V an A, B 5 V an D 10,8 V	24 V, U _{IT} = 5,5 V 2,0 32 V, I _{OL} = 3,2 mA 7,5 V an A, B, D 9,8 V 0,3 14 V, —I _{OH} = 6 mA 7,5 V an A, B 5 V an D 9,8 V 11 11,8	24 V, $U_{IT} = 5.5 \text{ V}$ 2.0 40 32 V, $I_{OL} = 3.2 \text{ mA}$ 7.5 V an A, B, D 0.8 V 0.3 0.5 14 V, $-I_{OH} = 6 \text{ mA}$ 7.5 V an A, B 5 V an D 0.8 V 11 11.8

Kennwert	Einstellwerte	min.	typ.¹)	max.	Einheit
Kurzschlußstrom	₩ _{CC} = 32 V			,	
gegen U _{CC}	$U_{IH} = 7.5 \text{ V an A, B, C}$				
IOSL	$U_{IT} = 0.8.V$		12,2		mA
Strom in Y	$U_{CC} = 32 \text{ V}, U_{O} = 32 \text{ V}$				
bei Tri-state	$U_{IH} = 7.5 \text{ V an A, B, D}$				
$I_{\mathbf{O}}$	$U_{IT} = 2.0 \text{ V}$		0,1	50	μΑ
Strom aus Y	$U_{CC} = 32 \text{ V}, U_{O} = 0$				
bei Tri-state	$U_{IH} = 7.5 \text{ V an A, B}$				
	$U_{II} = 5 \text{ V an D}$				
$-I_{O}$	$U_{IT}^{12} = 2 V$		0,1	25	μΑ
Steuerstrom aus X	$U_{CC} = 32 \text{ V}$				
	$U_{IH} = 7.5 \text{ V an A, B}$				
	$U_{II}^{II} = 5 \text{ V an D}$				
	$U_{IT}^{IL} = 0.8 \text{ V}$				
$-f_{\mathbf{Y}}$	$U_{\mathbf{X}}^{\mathbf{H}} = 5 \mathbf{V}$		1,1	2	mA

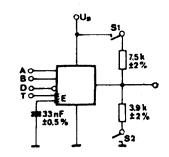
Dynamische Kennwerte: $(U_{CC} = 24 \text{ V})$

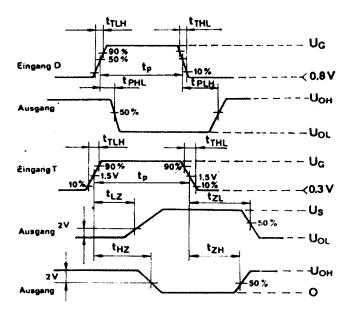
		•			
Kennwert		min.	typ.	max.	Einheit
Signalverzögerungszeit bei C = 33 nF an Anschluß E	^t PLH	5,5	9,6	12	ms
für Gatter 1 und 3	^t PHL	1,5	3,0	. 4	ms
Signalverzögerungszeit Anschluß E offen	t _{PLH}	2	4,6	9	μs
für Gatter 2	^t PHL	1	1,8	5	μs


2/84

E 412 D

Kennwert	•	` min.	typ.1)	max.	Einheit
Tri-state-Verzöge	rungs-				
zeiten	tLZ		600	10005)	ns
	tZL.		300	10005)	ns
	t _{HZ}		180	10005)	ns
	^t ZH		370	10005)	ns


- 1) Für alle typischen Werte gilt $\vartheta_a = 25 \, ^{\circ}\text{C} 5 \, \text{K}$ 5) Für Gatter 1


Meßschaltung E 412

2/84

Meßschaltung E 412 D

tPLH, tPHL: S1 offen

S2 geschlossen

S1 geschlossen

VLZ, VZL: S1 geschlos S2 offen

thz. tzn: S1 offen S2 geschlossen $U_{IH} = 7.5 \text{ V an A, B}$

 $U_{IT} = 0.8 \text{ V an T}$

 $U_{IH} = 7.5 \text{ V an A, B, D}$

U_{IH} = 7,5 V an A, B D offen Meßschaltung dynamische Kennwerte

Eigenschaften der Impulsgenerator-Eingangsimpulse

a) tplH, tpHL:

$$U_G = (13 \pm 0.5) \text{ V}, t_{TLH}, t_{THL} - 300 \text{ ns}$$

Wiederholfrequenz: $f = (30 \pm 5)$ Hz für Messung an Gatter 1 und 3

 $f = (30 \pm 5)$ kHz für Messung an Gatter 2

Impulsdauer: $t_P = (16.5 \pm 2)$ ms für Messung an Gatter 1 und 3 $= (16.5 \pm 2) \mu s$ für Messung an Gatter 2

b) tLZ, tZL, tHZ, tZH:

 $U_G = (3.5 \pm 0.4) \text{ V}, t_{TLH}, t_{THL} - 50 \text{ ns}$

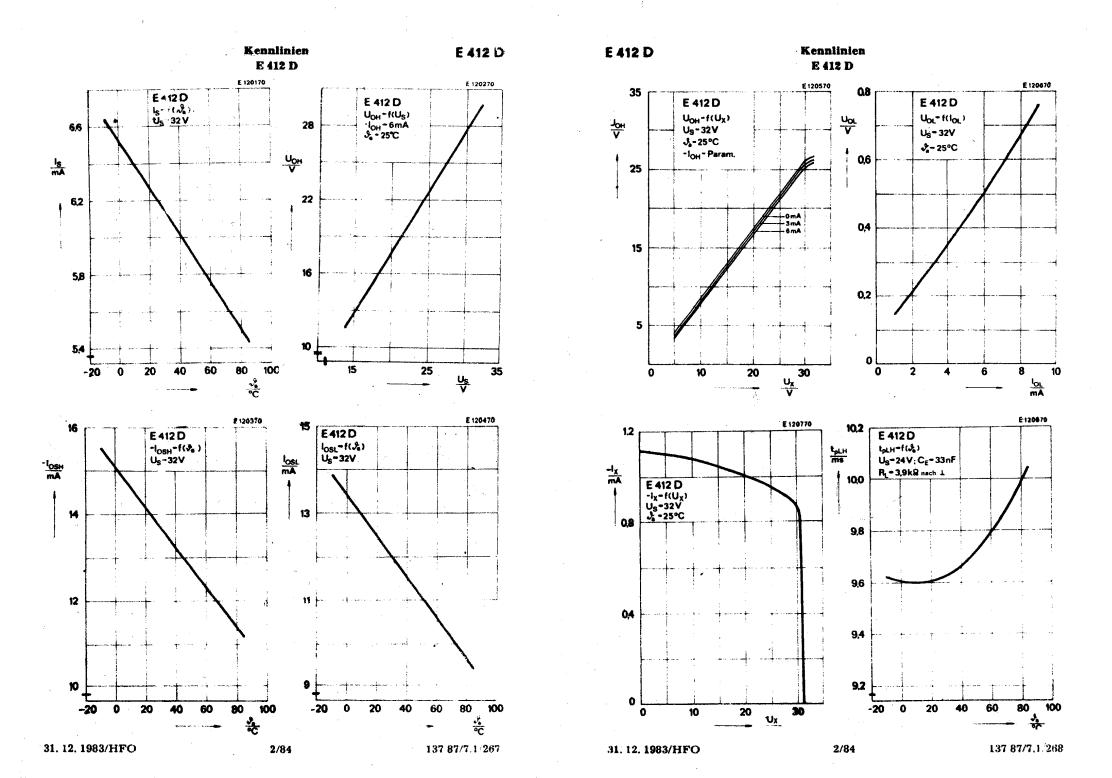
Wiederholfrequenz: $f = (250 \pm 25) \text{ kHz}$ Impulsdauer: $t_P = (2 \pm 0.2) \mu \text{s}$

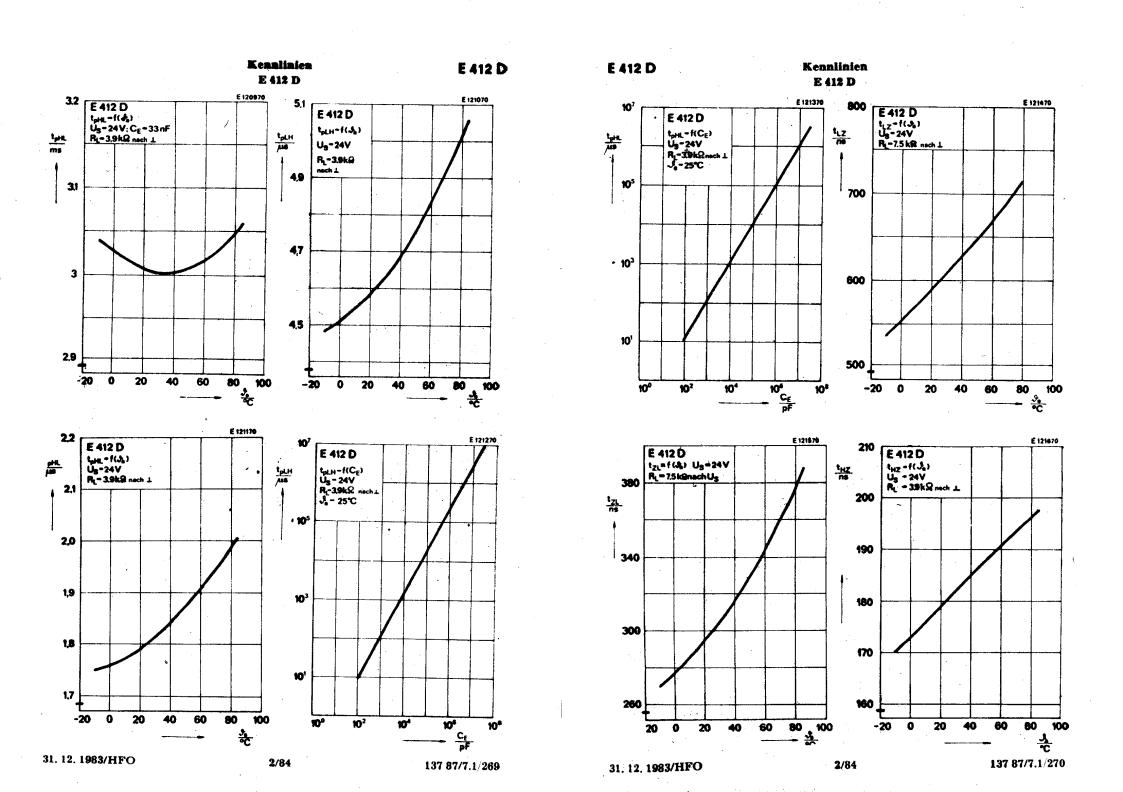
Funktionsbeschreibung E 412

Der Schaltkreis zeichnet sich durch hohe Störsicherheit und Zerstörfestigkeit aus. Er besteht aus 3 UND-Gattern mit 3,3 und 2 Eingängen, wobei je einer invertierend wirkt. An den Eingängen A, B, D wird eine Spannung $\geq 7,5$ V sicher als H-Signal und eine Spannung $\leq 5,0$ V als L-Signal erkannt. Offene Eingänge wirken als L-Signal.

Im Bereich der Eingangsspannung von 1...44 V ist der Eingangsstrom nahezu konstant.

Durch den Eingang T kann für alle 3 Gatter gemeinsam die Tri-state-Funktion realisiert werden. Dieser Eingang ist nur mit TTL-Pegeln ansteuerbar.


Jeder Ausgang Y ist dauerkurzschlußfest gegen Betriebsspannung und Masse. Zur Unterdrückung von Störimpulsen wird bei jeder UND-Funktion durch interne Verzögerungsstufen ein Eingangssignalwechsel verzögert zum Ausgang weitergeleitet.


Jedes Gatter besitzt einen Anschluß E zum zusätzlichen Vergrößern seiner Verzögerungszeit durch Anschalten eines externen Kondensators.

Über den Eingang X kann durch eine Spannung U_X ($U_X < U_{CC}$) der H-Pegel für alle 3 Gatter gemeinsam eingestellt werden, wobei folgendes gilt:

$$U_{OH} \approx U_X - 1V$$

Damit kann der Schaltkreis bei einer garantierten L-Spannung von $U_{OL} = 0.5 \text{ V}$ bei 3,2 mA TTL-Schaltkreise treiben.

