Sensorzeile L 110 C

Ing. JENS KNABE

Bild 1: Anschlußhele gues und Ahmess 2 Gate des Rückstell-Ausgangsgate 4 Gate 2 des Schieberegisters A

5 Gote 1 des Schieberegisters A

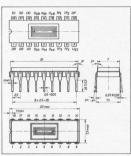
7 Tertnunkt 3 8 Testpunkt 4

11 Testpunkt 2 12 Testpunkt 1

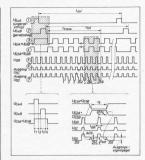
11 Gate 1 der Schieberegisters B

Gate 2 des

Ausganastro 17 Source des


Schieberegisters B

18 Source des Kompen sationstransistors Sensorzeile L 110 C

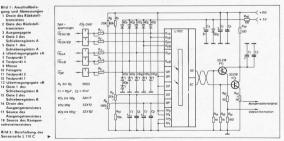

9 Masse 10 Fotogate

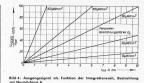
Dieses ladungsgekoppelte Bauelement wandelt optische Informat in elektrisch angloge Finzelsignale um. Die monolithisch integrierte Schaltung des Bauelementes besteht aus einer zeilenförmigen Anordnung von 256 strahlungsempfindlichen Sensoren, zwei Zweiphasen-Analogschieberegistern, einem Ladungsdetektor mit Ausgangsstufe und einem Kompensationsteil. Die gesamte Schaltung ist in einem modifizierten 18poligen DIL-Gehäuse mit Fenster für den Strahlungseintritt untergebracht. Durch Zuführung entsprechender Taktspannungen an das Bauelement entsteht ein selbstabtastender Strahlungsempfänger. Die Videoinformation der Sensorzeile besteht aus 256 analogen Einzelsianalen und wird seriell ausgegeben.

Das Bauelement lößt sich einsetzen u. a. zur Bildanalyse, Mustererken nung, Längenmessung, Flächenmessung, Kantenabtastung, Winkelmessung, Koordinatenerkennung, Werkstückerkennung, Werkzeugüberwachung, Oberflächenkontrolle, Erkennung und Ausmessung von Bohrungen, Werkzeugpositionierung, Faksimileabtastung, Stoff- und Gewebenrüfung. Spektralanglyse.

Mitteilung aus dem VEB Werk für Fernsehelektronik

Rild 3: Phosenlage der Taktspannungen


Schaltzeiten für G:x und G:x (Transporttakt) -


Das abgebildete Impulsschema zeigt die erforderlichen fünf Ansteuerimpulsfolgen (1) bis (5) und beide Ausgangssignale (6), (7). - Werden die Eingänge 6 und 13 parallelgeschaltet, so entfällt einer der beiden Übernohmeimpulse nach (1) oder (2).

Die Schieberegistertakte (2), (3) können nach dem 256. Bildimpuls bis zum erforderlichen Stillstand fortgesetzt werden. Diese Möglichkeit reduziert den Aufwand an Schaltkreisen. Bei langen Integrationszeiten kann die Transportzeit eingeengt wer-

Schaltzeiten für Gya, Gya t. - t. > 0.8 //4: (Ubertragungstakt): t₂ — t₁ > 0,1 μs; 20 ns < t_r, t_r < 80 ns Schaltzeiten für GR (Rückstelltakt): 0,2 to < ton < 0,3 to

20 ms < 1... t. < 100 ms

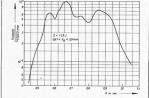
Bild 5: Empfindlichkeit in Abhängigkeit von der Emissionswellenlänge

Kenngrößen, bei ∂a = 25 °C

Spannung an den Testpunkten UTP in V TP 1, TP 3

	min.	typ.	mox.
Sättigungsausgangsspannung U _{sal} in mV	100	200	_
mittleres Dunkelsignal ADS	-	0,1	1,0% v. U.
Hellsignaldifferenz PRNU¹)	-6	±4	6% v. U.
Dynamikbereich DR in mV	330	500	-
Dunkelsignaldifferenz DSNU	-	-	2,0% v. U.n
Empfindlichkeit S in Vcm²²)	0,2	0,4	_
Sättigungsbestrohlung $H_{c sat}$ in $\mu J/cm^2$ bei $t_{lax} = 1,94 ms^2$)	-	0,5	1,0
Diese Kenngrößen gelten bei folgenden	Betriebs	bedingur	igen:
Statische Betriebswerte			
Spannung am Drain			
des Ausgangstransistors U _{CO} in V Spannung am Drain	15	±0,5	
des Rückstelltransistors Unz in V	15	+0.5	
Spannung am Ausgangsgate			
des Schleberegisters Una in V	7		
(durch einen Abgleich im Bereich von 68 V ist eine Optimierung des Betriebes möglich)			
Spannung am Fotogate U _{GP} in V (Funktion ist zwischen 0 und 12 V möglich)	012		

TP 2, TP 4	15	±0,5
Impulsbetriebswerte		
Schieberegistertransporttaktspannung L ³)		
UGIAL UGIBL IN V		+0.5
UGZAL, UGZBL in V		0,5+0,5
Schieberegistertransporttaktspannung H ²	1	
UGIAN, UGINN IN V		
UGZANI UGZENI IN V		
(durch einen Abgleich im Bereich von	610 V	
ist eine Optimierung des Betriebes mö	glich)	
Obertragungstaktspannung L ³) U _{GXAL} in \		+0.3
U _{GXRL} in V	1	0.5 + 0.3
Obertragungstaktspannung H ²) U _{GXAH} In	V	
U _{GYRE} in	V	
(durch einen Abgleich im Bereich von	610 V	
ist eine Optimierung des Betriebes mö	iglich)	
Rückstelltaktspannung L³) U _{GRL} in V		0.5+0.3
Rückstelltaktspannung H Ugen in V		10
Phasenlage der Taktspannungen (siehe I	OC Islan	


Strahlungsempfangsteil

Abmessungen der Sensoren 13 µm × 17 µm (256 △ 3,328 mm) Mittenabstand 11 ---Abstand von der Oberfläche der Glasscheibe bis zur Chipabortitions. etwo 1,6 mm

Gehäuseausführung DIL-Gehäuse

Keramik Oherseite Plast mit Glasfenster Bauform

21.1.1.2.18 nach TGL 26 713

Informationswerte, bei $\vartheta_a = 25\,^{\circ}\mathrm{C}$

	typ.	
rouschöquivolente Bestrohlung NEE')*) in µJ cm²	1 - 10-3	
Spitze-Spitze-Rauschspannung U _N in µV	300	
mittlere Signaloffsetänderung RSO in mV ms	0.2	
spektraler Empfindlichkeitsbereich SR in µm	0,451,05	
Rückstelltaktamplitude Uzs in mV	~ 550°)	
Kompensationstaktamplitude U _{Ck} in mV	≈ 550°)	
Schieberegistertransporttaktfrequenz (obere)*)		
f _{GIACII} in MHz	5	
fozaza in MHz	5	
Rückstelltaktfrequenz (abere) ¹)		
fox in MHz	10	
Ausgangsimpedanz Z in Ω	1 000	
Verlustleistung Prot in mW		
bei U _{pq} = 15 V	100	

Grenzwerte	
Spannungen U in V an den Anschlüssen	
2; 3; 4; 5; 6; 7; 10; 12; 13; 14; 15	von -0,312
Spannungen U in V an den Anschlüssen	
1; 8; 11; 16	von -0,318
Betriebstemperaturbereich 8, in °C	-2555
Lagerungstemperaturbereich Syra in °C	-25100

1) Messung bei 50 % U_{sat}, das erste und das letzte Element werden nicht berücksichtigt.

7) Bei Bestrahlung mit Normlichtort A gilt: 1 lx = 4,65 µJ cm² b) Dos Auftreten negativer Impulsopitren (U < 0 V) verursacht einen scheinboren Anstieg des Dunkelsignals $C_{GXA} = C_{GXB} = C_{GIA} = C_{GIB} = C_{GIB}$

4) U_{ES} und U_{CS} — Gleichspannungsanteil ≈ 5 V

7) Die resultierende Datenausgangsfrequenz fon ist doppelt so groß wie die Schieberegisterfrequenz f₀₁₃, f₀₂₃, f₀₁₈, f₀₂₈. Die angegebenen Taktfolgen sind typische Folgen zum Betrieb des Bauelementes. Der Betrieb bei höheren oder niedrigeren Frequenzen beschädigt das Bauelement nicht.

9 Der Dynamikbereich wird berechnet als Verhältnis der Sättigungsausgangsspannung zum Spitze-Spitze-Rauschen des Bauelementes im unbeleuchteten Zustand: DR = NEE bei t_{int} = 1,94 ms und Bestrohlung mit Normlicht A gilt E_{NEE} ≤ 0,11 lx

Standard Anwendungshinweise a: 1.5 a TGL 38 679

Die Sensorzeile ist nur in einer Fassung zu betreiben. Für die Handhabung gelten die allge meinen Umgangsregeln für MOS-Bauelemente, Die Anschlüsse 17 und 18 dürfen nur während des

Betriebes nicht an Masse gelegt werden

Fassung

18polige IS-Stecklassung VEB Kontoktbauelemente und Spezialmaschinenbau Gornsdorf Best.-Nr. bis 12/83 - 332845125020 nach Kennblatt

Bestellung ab 1/84 nach TGL 36 665