mikreelektronik

SP 106

Hersteller: VEB Werk für Fernsehelektronik Berlin

Fotodiode

Die SP 106 ist eine planare pin-Fotodiode in einem transparenten Kunststoffgehäuse. Sie ist sowohl für den Fotodioden- als auch für den Elementbetrieb geeignet und zeichnet sich durch eine hohe Fotoempfindlichkeit im nahen Infrarotbereich, ein geringes Dunkelstromniveau und kleine Schaltzeiten aus.

Das Bauelement ist zur allgemeinen Anwendung und insbesondere für die Infrarotsignalübertragung geeignet.

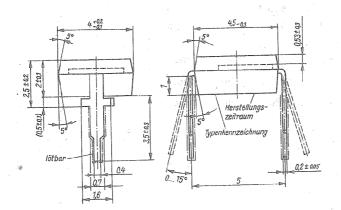


Bild 1: Gehäuse

2/86

0,6 0,95			
bestrahlungs- empfindliche Anode			
2,76 x 2,76			₩
\$	4303		
	-		
	Masse:	0,2 g	Φ.
- **	Standard:	TGL 42943	}

Bild 2: Gehäuse - Draufsicht

7	e.	nn	ze	1 C	nn	un.	Z.
500	COLUMN TO SERVICE	TAX STORY	-	************	COMPOSITION	the second second	45345
			10000				
						32.12	
20,	-185				200		
п	37	na	~ ? ? s	~~~	~~~	-	~ 1~

Typenkennzeichnung (anodenseitig)	Herstellungsjahr (katodenseitig)				
	1986	grüh			
	1987	gelb			
	1988	rot			
	1989	grau			
	1990	braun			
	1991	rosa			
	1992	weiß			
	1993	orange			
	1994	schwarz			
	1995	blau			

veinigropen per	8 = 25 U					
		Kurz- Zerika	min.	typ.	max.	Einheit
Leerlaufspannung 1)	napatolingkanapa	Ū,	330	400	esp	mV
$E_v = 1 \text{ klx}$. •				
$R_{L} \ge 10^{7} \text{ Ohm}$					•	
Kurzschlußstrom ¹)	*.	\mathbf{I}_{K}	50	75	8993	/uA
$E_{v} = 1 \text{ klx}$						i di sadri
$R_{L} \leq 10 \text{ Ohm} \cdot$						
Dunkelstrom		I_{RO}	ento	1	. 30	nA
$-\mathbb{E}_{\mathbf{e}} = 0$						

Gesantkapazitätaa esik kan kan kan kan C_{tot} der = 10 de = 20 meta 35 meta = 10 =

Spektrele Empfindlichkeit				3	
$U_R = 10 \text{ V}$	p.	Sirengge.			
$\lambda = 850 \text{ nm}$	S	0,5	0,6	. Bros	A/W
$\lambda = 950 \text{ nm}$	*		0,5	. 95.5%	A/W
Wellenlänge der maximalen Empfindlichkeit	λ^{-1}		900	e de la companya de l	nm
Impulsanstiegszeit	tr		15	80	ns
Impulsabfallzeit	tr	em.	20	80	ns
$U_R = 10 \text{ V}$ $\lambda = 900 \text{ nm}$				la edita Massacelenia	
$R_{L} = 50 \text{ Ohm}$					
			a Spaig		245.00

Grenzwerte					
Sperrgleichspannung $\mathcal{S}_{a} = -25 \dots + 85$ °C	v_R	elip.	Go	25	V
Periodische Spitzensperr- spannung $\mathcal{P}_{a} = -25 \dots +85 ^{\circ} \text{C}$	$\mathbf{u}_{\mathrm{RRM}}$	- trab		25	V

Fortsetzung Grenzwerte

	Kuiz- Zeidien	min.	typ.	max.	Ein- heit
Verlustleistung	Ptot		4900	150	mW
1 = 25 °C		and the same of th			
Betriebstemperaturbereich	A. a.	-25	•	+85	OC
Lagerungstemperatur- bereich	y, stg	-40	· · · · · · · · · · · · · · · · · · ·	+85	o'G

¹⁾ gemessen mit Normallicht A nach TGL 37363 in Richtung geometrische Achse

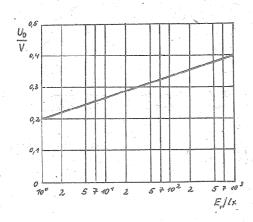


Bild 3: Leerlaufspannung bei \mathcal{L}_{a} = 25 $^{\rm O}{\rm C}$ in Abhängigkeit der Beleuchtungsstärke E $_{\rm w}$

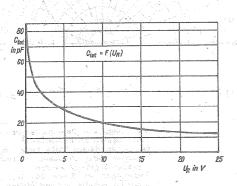


Bild 5: Sperrschichtkapazität in Abhängigkeit der Spannung

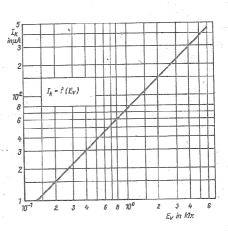


Bild 4: Kurzschlußstrom bei $\frac{1}{6}$ = 25 °C in Abhängigkeit der Beleuchtungsstärke $E_{\rm tr}$

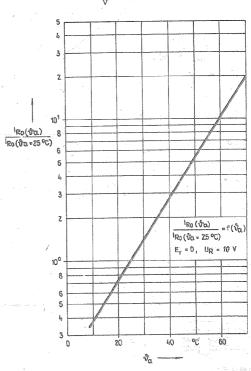


Bild 6: Mittlerer normierter Sperrstrom in Abhängigkeit von der Umgebungstemperatur $\mathcal{L}_{\rm R}^{\gamma}$

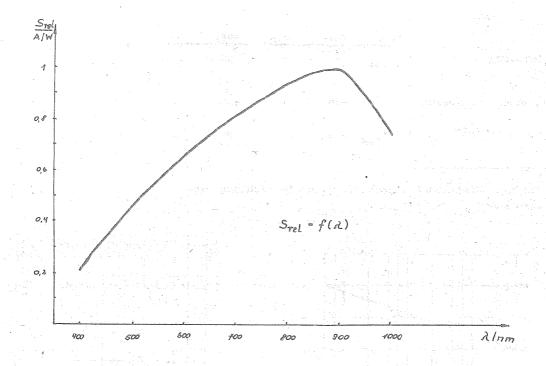


Bild 7: Mittlere spektrale Empfindlichkeit

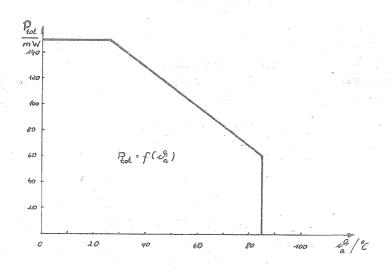


Bild 8: Zulässige Verlustleistung in Abhängigkeit von der Umgebungstemperatur 🚜

Bild 9: Mittlere Empfangscharakteristik

. Enderungen vorbehalten! Redaktionsschluß Dezember 1985 Die vorliegenden Datenblätter dienen ausschließlich der Information! Es können daraus keine Liefermöglichkeiten oder Produktionsverbindlichkeiten abgeleitet werden. Änderungen im Sinne des technischen Fortschritts sind vorbehalten.

Herausgeber

veb applikationszentrum elektronik berlin im veb kombinat mikroelektronik

Mainzer Straße 25 Berlin 1035

Telefon: 5 80 05 21, Telex: 011 2981; 011 3055