Schlüssel-Nr. ELN: 137 87 33 1

Hersteller:

. 101019.

ME = Stück (076)

Scholtkreis U 103 D RST-Flip-Flop für negative Logik

Erzeugnisstandard: TGL 25654

Gütezeichen: s. S. 137 87/3/13

Preisbildung: PAO 4119

Bilanzorgan:

FWE

Übergeordnetes Organ:

VVB BuV

Entwicklungsstelle:

FWE

Importeur: Lieferquelle:

FWE, VKM, EHB

Bezugseinschränkung: Garantie:

TGL 24951

Standards über Einsatzbedingungen: Internationale Standards und Empfehlungen: Grundlagenstandards:

ArtNr. 137 87 331	Тур	Gehäuseart
41 103004	U 103 D	Plast

Bezeichnungsbeispiel: Schaltkreis U 103 D

Bezeichnung:

SCHALTKREIS U 103 D — TGL 25 654

ART.-NR. 137 87 33 141 103004

U 103 D

Technische Charakteristik

Verwendung:

Der integrierte MOS-Schaltkreis im DIL-Plastgehäuse enthält ein RST-Flip-Flop für negative Logik, bestehend aus MOS-Feldeffekttransistoren vom p-Kanal-Anreicherungstyp. Seine Eingänge sind mit integrierten Gateschutzdioden versehen. Das Flip-Flop ist durch die Eingänge r und s von außen voreinstellbar.

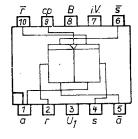
Masse: ca.1 g

Geometrische Abmessungen (Maßbild, Bauform): Bauform nach TGL 26 713 s. S. 137 87/3.30/5

Konstruktiver Aufbau: Unipolarer p-Kanal-MOS-Feldeffekttransistor-Halbleiterschaltkreis mit 2 x 5 Anschlußkontakten im 2,5 mm Rastermaß

Lieferform: geordnet in Stülp- bzw. Schiebeschachteln

Maßnahmen zur Sicherung der Funktionstüchtigkeit: Einbau- und Lötvorschriften s. S. 137 87/3.30/1


Einbaulage: beliebig

Anwendungstechnologien und Behandlungsvorschriften: Einbau- und Lötvorschriften s. S. 137 87/3.30/1

Funktionstabelle

Anschlußbelegung und log. Schaltbild

<u>r</u>	s	an_	a n+1
Н	Н	H	verbote- ner Zust.
L	H	H	L
H L	. L L	H H	H H
H	H	L	verbote- ner Zust.
${f L}$	H	${f L}$	L
H	L	L	H
L	${f L}$	L	\mathbf{L}

L an Eingang s setzt Ausgang a auf L

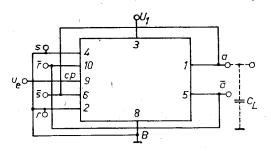
L an Eingang r setzt Ausgang a auf L

a_n Zustand vor Anlegen des Taktimpulses

a_{n+1} Zustand nach Anlegen des Taktimpulses

U 103 D

Betriebsspannung: $-U_1 = 27 \text{ V} \quad {+1 \atop -2} \text{ V}$


Statische Kennwerte bei $\vartheta_a = 25 \, ^{\circ}\text{C}$

Kenngröße	Kurz- zei ch en	Meßbed	lingungen	min.	typ.	max.	Einh.
Eingangs- reststrom	$-\mathrm{I}_e$	$-\mathrm{U}_e$	= 25 V			10	μA
Ausgangs- spannung L	$-\mathrm{U}_{aL}$	$egin{array}{l} -\mathrm{U}_{eH} \ -\mathrm{U}_{eL} \ \mathrm{R}_{L} \end{array}$	$ \leq 2 V \geq 9 V = 100 k\Omega $	10			V
Ausgangs- spannung H	$-\mathrm{U}_{aH}$	$-\mathrm{U}_{eL}$	$ \leq 2 V \geq 9 V = 100 k\Omega $			1	V
Ausgangs- spannung L bei Belastung mit +1 mA	$-\mathrm{U}_{aL}$	-UeH -UeL	$\leq 2 \text{ V}$ $\geq 9 \text{ V}$	5			V
Ausgangs- spannung H bei Belastung mit —1 mA	$-\mathrm{U}_{aH}$	$-\mathrm{U}_{eH} \ -\mathrm{U}_{eL}$	$\leq 2 \text{ V}$ $\geq 9 \text{ V}$			2	V
Mittlere Stromaufnahme	$-\mathrm{I}_L$	$-\mathrm{u}_e$ $\mathrm{f}_{\mathrm{t}/T}$	= 13 V = 250 kHz = 1:2		2		mA
Kapazität der Signal- eingänge	$^{\mathrm{C}_{m{e}}}$	-U ₁ Meß- spannun	$= 0 \text{ V}$ $g \leq 0.2 \text{ V}$	•		8	pF
Kapazität des Takt- einganges	C_{cp}		f = 0.52 MHz			11	pF

U 103 D

Dynamische Kennwerte bei $\vartheta_a=25\,{}^{\circ}\!\mathrm{C}$

Kenngröße	Kurz- zeichen	Meßbedingungen		min.	typ. max	c. Einh
Einschalt- verzögerungs- zeit	t _{on.}	siehe Meß- schaltung zur Bestimmung von ton und toff		*	400	ns
Ausschalt- verzögerungs- zeit	toff				350	ns
Störkapazität	\mathbf{C}_{st}	$egin{array}{ll} \Delta\mathrm{U}_{st} &= 17\mathrm{V} \ \mathrm{f} &= 30\mathrm{kHz} \ \mathrm{C}_L &= 20\mathrm{pF} \end{array}$			30	рF
Grenzwerte						
Kenngröße	Kurz- zeichen	Meßbedingungen			max. Wer bzw. Bere	
Betriebs- spannung	U1 ·	ϑ_a	= 0+70 °C		—31+o,	3 V
Eingangs- spannung	U_e	ϑ_a	$= 0+70 ^{\circ}\text{C}$		— 31 +0 ,	,3 V
Eingangs- spitzen- spannung	\mathbf{U}_{eM}	$rac{artheta_a}{\mathrm{t}/_T}$	$= 0+70 ^{\circ}\text{C}$ = 1:10		31	V
Impulsspitzen- strom	I_{cM}	t_{pmax}	$= 1 \mu s$		+2	mA
Betriebs- umgebungs- temperatur	ϑ_a				0+70	°C
Lagerungs- temperatur	ϑ_s				_55 + 12	5 °C

Die Anschaltung des Eingangssignals an cp und die Prüfung von ton und toff an den Ausgängen erfolgt nach folgendem Plan für dynamischen Funktionstest:

r an B; san B; san a; r an a; ep an ue

Schritt	ср	a	a		T.
1	H	H	L	U_{HL}	ist der Spannungssprung
2	\mathbf{U}_{HL}	${\it toff}$	\mathbf{t}_{on}		von 0 Volt auf UeL
3	U_{LH}	\mathbf{L}'	H		
4	$\mathrm{U}\dot{H}L$	\mathbf{t}_{on}	\mathbf{t}_{off}	U_{LH}	ist der Spannungssprung
5	U_{LH}	H	L		von UeL auf 0 Volt

Eingangswiderstand des Oszillografen:

 $\geq 1 M\Omega$

Ausgangslastkapazität:

 $=60~\mathrm{pF}$

 R_e

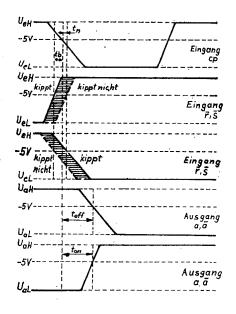
 $\mathrm{C} \dot{\mathbf{L}}$

(einschließlich Eingangs-

kapazität des Oszillografen)

=250 kHz

Eingangssignal:


 $-U_{eL} = 13 \text{ V } (-U_1 = 27 \text{ V})$

 $t_{LH} = 150 \text{ ns } f$ gemessen zwischen —2 V und —9 V $t_{HL} = 300 \text{ ns}$

 $t/_T = 1:2$

U 103 D

Impulsdiagramm

Während der Bereitstellzeit th und der Nachwirkzeit ta zeigt das RST-Flip-Flop undefiniertes Verhalten