

ZEISS

Schaltkreis

U 2148 D

Vergleichstyp 2148 H (U 2148 D 70) 2148 H - 3 (U 2148 D 55)

1/88 (12)

Hersteller:

VEB Forschungszentrum Mikroelektronik Dresden Betrieb des Kombinates VEB Carl Zeiss JENA

Statischer Schreib-/Lese-Speicher mit wahlfreiem Zugriff (sRAM)

- Speicherkapazität

4096 Bit

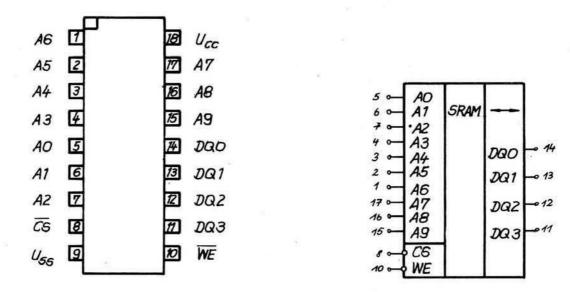
- Organisation

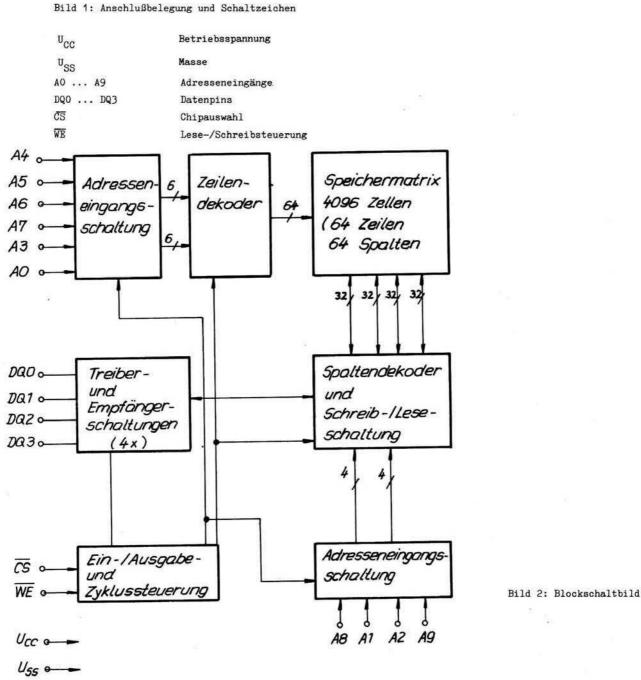
1 K x 4 Bit

- Typspektrum

U 2148 D 55 (Grundtyp)

U 2148 D 70 (Anfalltyp)


- Zugriffszeit


max. 70 ns (für U 2148 D 70) max. 55 ns (für U 2148 D 55)

- Betriebsspannung

+ 5 V + 5 %

- gemeinsame (bidirektionale) Datenein-/-ausgänge
- Tri-state -Ausgangsstufen
- TTL-Kompatibilität für alle Anschlüsse
- 18-poliges DIL-Gehäuse (Plastgehäuse)
- Umgebungstemperatur 0 ... 70 °C
- integrierte Schutzschaltungen an allen Eingängen
- nSGT-Herstellungstechnologie

Funktionsbeschreibung

Der U 2148 D besteht aus folgenden Teilschaltungen:

- Speichermatrix mit 64 Zeilen und 64 Spalten (4096 Bit)
- Adresseneingangsschaltung für 10 Adressen
- Spaltendekoder
- Zeilendekoder
- bidirektionale Datenein-/-ausgabe und Zyklussteuerung
- Treiber- und Empfängerschaltung

Die Aktivierung des U 2148 D erfolgt mittels des CS-Signales (CS=LOW); im Ruhestand (CS=HIGH) erfolgt schaltkreisintern eine Reduzierung der Stromaufnahme auf ca. 30 % des Betriebsstromes.

Der U 2148 D kann in folgenden Betriebsarten arbeiten:

Schreibzyklus

Lesezyklus.

Die Betriebsart "Schreiben" ist durch $\overline{\text{CS}}=\overline{\text{WE}}=\text{LOW}$ gekennzeichnet; die an den Datenanschluß DQO bis DQ3 anliegenden Daten, werden gemäß Impulsdiagramm "Schreibzyklus", in die adressierten Speicherzellen eingeschrieben.

Bei der Betriebsart "Lesen", gekennzeichnet durch CS=LOW und WE=HIGH, liegen die Daten der durch den Adreßanschluß AO bis A9 adressierten Speicherzellen der Matrix nach Ablauf der Zugriffszeit gültig an den Datenausgängen DQO bis DQ3 an.

Funktion	C S	WE	DQO bis DQ3
Ruhezustand	Н	beliebig	Ausgang hochohmig (Tri-state), Eingänge gesperrt
Schreiben	L	L	Ausgang hochohmig, Eingänge aktiv
Lesen	L	Н	Eingänge gesperrt, am Ausgang steht Inhalt der aus- gewählten Speicherzellen zur Verfügung

Technische Daten

Alle Spannungen sind auf USS = 0 V bezogen

Grenzwerte

	Kurzzeichen	min.	max.	Einheit
Betriebsspannung	ucc	0	7	v
Spannung an allen Anschlüssen	$\mathbf{U}_{\mathbf{G}}$	-1,5	7	V.
Verlustleistung	$P_{\mathbf{V}}$	-	1,2	W
Ausgangsdauerstrom	IDS		10	mA
Umgebungstemperatur	A a	0	70	°c
Lagertemperatur	Stg	-55	125	o _C

Betriebsbedingungen

Statische Bedingungen

	Kurzzeichen	min.	typ.	max.	Einheit
Betriebsspannung	ucc	4,75	5,0	5,25	v
L-Eingangsspannung	uIL	-1,0	0,05	0,8	V
H-Eingangsspannung	U _{IH}	2,2	3,4	, 5,5	V
Umgebungstemperatur	197 a	0	25	70	· oC

	Kurzzeichen	U 2148 D 55	U 2148 D 70	Einheit
S-Impulsdauer	^t clch	. 55	70	ns
dressenzykluszeit	t _{AVAX}	55	70	ns
dressenvorhaltzeit	t _{AVWL}	0	0	ns
dreßhaltezeit	twhax	5	5	ns
E-Impulsdauer	t _{WLWH}	40	50	ns
E-Impulsvorhaltezeit	twich	40	50	ns
E-Impulshaltezeit	t _{CLWH}	50	65	ns
atenvorhaltezeit	^t DVHW	20	25	ns
atenhaltezeit	t _{WHDX}	0	0	ns
Ausgangsinformation gültig nach Adreß- wechsel	t _{AXQV}	0	0	ns
Verzögerungszeit	tCLQX	0	0	ns
(CS-LOW-Ausgang aktiv)				
	Kurzzeichen		yp. max.	Einheit
Betriebsstrom	Icc	1	10 150	55304
CC = 2 A Yungame	-00		10 150	mA.
J _{CC} = 5 V, Ausgänge offen, CS=LOW, Ag = 25 °			10 1,50	ma .
offen, CS=LOW, $\frac{9}{8}$ = 25 °		_	29 50	mA ,
	CC I _{CCR}	-		
offen, CS=LOW, $\mathcal{A}_{a} = 25^{\circ}$ Ruhestrom $J_{CC} = 5$ V, Ausgänge offen, CS-HIGH, $\mathcal{A}_{a} = 25^{\circ}$ Eingangsleckstrom	CC I _{CCR}	-		
offen, \overline{CS} =LOW, \mathcal{A}_{a} = 25 °CRuhestrom J_{CC} = 5 V, Ausgänge offen, \overline{CS} -HIGH, \mathcal{A}_{a} = 25 Eingangsleckstrom J_{CC} = 5,25 V	CC I _{CCR} CC /I _{IL} /	-	29 50	mA
offen, CS=LOW, $\sqrt{\frac{9}{8}} = 25^{\circ}$ Ruhestrom $U_{CC} = 5^{\circ}$ V, Ausgänge offen, CS-HIGH, $\sqrt{\frac{9}{8}} = 25^{\circ}$ Eingangsleckstrom $U_{CC} = 5^{\circ}, 25^{\circ}$ V Ausgangsleckstrom $U_{CC} = 5^{\circ}, 25^{\circ}$ V	°c I _{CCR}	-	29 50	mA /UA
offen, CS=LOW, $\frac{9}{8}$ = 25 °C Ruhestrom $U_{CC} = 5 \text{ V}$, Ausgänge offen, CS-HIGH, $\frac{9}{8}$ = 25 °C Ruhestrom $U_{CC} = 5,25 \text{ V}$ Ausgangsleckstrom $U_{CC} = 5,25 \text{ V}$ Ausgangsleckstrom $U_{CC} = 8 \text{ mA}$ H-Ausgangsspannung	CC ICCR CC /IIL/ /IOL/	2,0	29 50 10 50	mA /UA /UA
offen, \overline{CS} =LOW, $\mathcal{A}_{\mathbf{a}}^{\mathcal{H}}$ = 25 °CRuhestrom U_{CC} = 5 V, Ausgänge	CC ICCR CC /IL/ /IOL/ UOL	-	29 50 10 50	mA /UA /UA V

Dynamische Kennwerte

	Kurzzeichen	U 21	U 2148 D 55			U 2148 D 70			Einheit		
				max.	min.	typ.	max.				
CS-Zugriffszeit UCC = 5 V,	‡CLQV	-	42	55	-	53	70	ns			
$C_L = 50 pF$									87 6		
Adreß-Zugriffszeit U _{CC} = 5 V,	^t AVQV	=		55	#		70	ns			
C _L = 50 pF											
Verzögerungszeit	tCHQZ	0		20	0		20	ns			
CS-Ausgang hochohmig			27.								
$U_{CC} = 5 V$		*									
$C_L = 5 \text{ pF},$ $C_a = 25 \text{ °C}.$											
Verzögerungszeit WE-Ausgeng hochohmig	^t wLQZ	0		20	0		25	ns	8		
$u_{CC} = 5 V$,		141			36.1						
$C_L = 5 pF$,											
∂ _a = 25 °C											
Verzögerungszeit	twhQX	0	11	-	0	11	-	ns			
WE-Ausgang aktiv	MITAT										
$v_{cc} = 5 v$,		9.		100							
$C_L = 5 pF$,									8		
$\mathcal{S}_{\mathbf{a}} = 25$ °C											

Den angegebenen Zeiten liegt folgende Beschaltung der Datenausgänge DQi zugrunde.

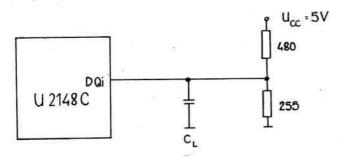


Bild 3: Beschaltung der Datenausgänge

Die Lastkapazität beträgt C_L = 50 pF (für $\overline{\text{CS}}$ - und Adreßzugriffszeiten) bzw. C_L = 5 pF (für alle übrigen dynamischen Kennwerte).

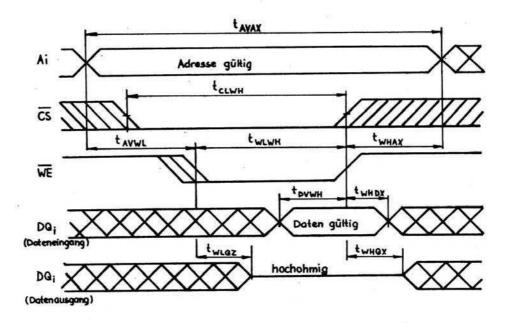


Bild 4: $\overline{\text{WE}}$ -gesteuerter Schreibzyklus (Beendigung durch L/H-Flanke von $\overline{\text{WE}}$)

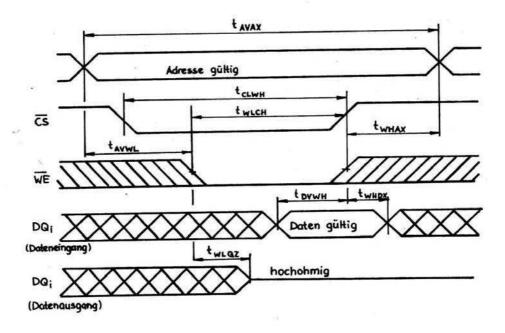


Bild 5: $\overline{\text{CS}}$ -gesteuerter Schreibzyklus (Beendigung durch L/H-Flanke von $\overline{\text{CS}}$)

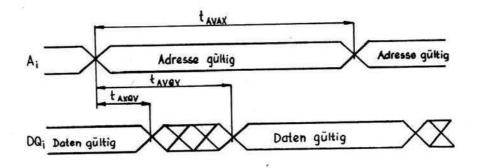


Bild 6: Lesezyklus 1 (\overline{CS} = LOW, \overline{WE} = HIGH)

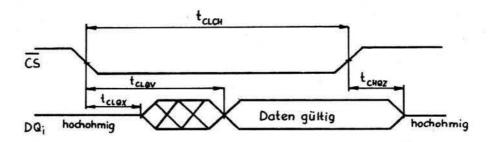


Bild 7: Lesezyklus 2 (WE = HIGH; Adresse liegt über gesamten Lesezyklus stabil an)

Applikative Hinweise

Der U 2148 D 70 und U 2148 D 55 sind schnelle vollstatische Schreib-/Lese-Speicher.

Bedingt durch ihre geringe Zugriffszeit sind sie nicht nur in der Rechentechnik, sondern auch für spezielle Gebiete der Meßtechnik (z. B. Meßwertspeicher, Transientenspeicher) gut einsetzbar.

Die TTL-Kompatibilität aller Anschlüsse sowie die Möglichkeit der Ausgangstrennung (Tri-state) gestatten einen systemfreundlichen Einsatz der U 2148 D-Typen, d. h. Ansteuerung durch Schaltkreise der D-, DL- und DS-Logikreihen, Verwendung in Tri-state-Bussystemen.

Die genannten Typen sind direkt (d. h. ohne WAIT-Zyklus) mit dem gesamten in der DDR zugelassenen CPU-Sortiment betreibbar.

Bedingt durch die sehr geringen Zugriffszeiten des D 2148 D ergeben sich für die Systemarbeit (Schaltungs- und Leiterkartenentwurf) bestimmte Forderungen /1/:

- Die Betriebsspannungs- und Masseleitungen der U 2148 D-Speicherkonfiguration sind gitterförmig bzw. als getrennte Kupferflächen (d. h. Mehrebenen-Leiterkarten) auszuführen.
- Die sRAM-Schaltkreise sowie periphere Ansteuerlogik sollmeine gemeinsame Massefläche haben (d. h. Vermeidung von Erdschleifen).
- Unmittelbar an jeden sRAM-Schaltkreis ist ein Stützkondensator von 47 nF bis 100 nF (Keramik-kondensator) anzuordnen.
- Es wird empfohlen, unmittelbar am Steckverbinder zwischen dem Betriebsspannungs- und Masseanschluß einen Kondensator von 22 /uF bis 47 /uF anzubringen (ggf. sogar einen Tiefpaß).
- Zur Vermeidung von Reflexionen auf den signalführenden Leiterbahnen (diese stellen hier teilweise nicht abgeschlossene Übertragungsleitungen dar) sollten zwischen den DS-Treibern und den
 Speichern Längswiderstände vorgesehen werden (Anschlußwiderstände). Die Widerstände liegen in der
 Größenordnung 30 Ohm bis 50 Ohm (der optimale Wert muß experimentell ermittelt werden) und sind
 so nahe wie möglich an den Speicherschaltkreisen anzuordnen.

Literatur

/1/ Richtige Anwendung eines schnellen RAM
Zeitschrift Elektronik Applikation, 13 (1981) 11